Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)
\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)
Vậy: S={1;-1;3}
gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}
Theo đề bài, ta có:
a : b
(a+73) : (b+4) = dư 5
do đó
a + 73 x (b+4) + 5
a + 73 = x b + \frac{a}{b} x 4 + 5
a + 73 - 5 = a +
a + 68 = a +
a - a + 68 =
68 =
hay
Vậy thương của phép chia là 17
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Đặt \(\sqrt{x^2+1}=t-x\)
\(\Leftrightarrow x^2+1=t^2-2tx+x^2\)
\(\Leftrightarrow x=\frac{t^2-1}{2t}\)
\(\Rightarrow\left(2\left(\frac{t^2-1}{2t}\right)+1\right)t+\frac{16\left(\frac{t^2-1}{2t}\right)+153}{16\left(\frac{t^2-1}{2t}\right)-45}=0\)
\(\Leftrightarrow8t^4-37t^3-53t^2+190t=0\)
\(\Leftrightarrow t\left(t-2\right)\left(8t+19\right)\left(t-5\right)=0\)
Làm nốt
SORRY BÀI NÀY KO VIẾT ĐC RÕ THÔNG CẢM VÌ MÁY KO VIẾT ĐC
Việc nhận thấy 3/4 và 12/5 là nghiệm của phương trình sẽ giúp ta tìm ra nhân tử (4x−3)(5x−12)(4x−3)(5x−12).
Phương trình được viết lại
(2x−1)(16x−45)+(16x+153)(√x2+1−x)=0.(2x−1)(16x−45)+(16x+153)(x2+1−x)=0.
Nhận xét: ``Tuyến tính hóa'' √x2+1−xx2+1−x bằng hai điểm 3434 và 125125, ta thu được phương trình √x2+1−x=−2x+711x2+1−x=−2x+711 nhận 3434 và 125125 làm hai nghiệm. Từ các này, ta có phân tích sau:
Phương trình trên tương đương
[(2x−1)(16x−45)+(16x+153)(−2x+711)]+(16x+153)(√x2+1−x−−2x+711)=0.[(2x−1)(16x−45)+(16x+153)(−2x+711)]+(16x+153)(x2+1−x−−2x+711)=0.
⇔8(4x−3)(5x−12)11+(16x+153)((4x−3)(5x−12))11(11√x2+1+9x+7)=0.⇔8(4x−3)(5x−12)11+(16x+153)((4x−3)(5x−12))11(11x2+1+9x+7)=0.
⇔(4x−3)(5x−12)(8+16x+15311√x2+1+9x+7)=0.⇔(4x−3)(5x−12)(8+16x+15311x2+1+9x+7)=0.
Nhận xét:
8+16x+15311√x2+1+9x+7=88√x2+1+88x+20911√x2+1+9x+7>0∀x∈R.8+16x+15311x2+1+9x+7=88x2+1+88x+20911x2+1+9x+7>0∀x∈R.
Do đó phương trình ban đầu chỉ có hai nghiệm là 3434 và 125125.
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
a, \(16x^2-\left(1+\sqrt{3}\right)^2=0\\ \Rightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{3}}{4}\\x=\dfrac{-1-\sqrt{3}}{4}\end{matrix}\right.\)
b, \(x-2\sqrt{2x}+2=8\\ \Rightarrow x-\sqrt{8x}-6=0\\ \Rightarrow x-6=\sqrt{8x}\\ \Rightarrow\left(x-6\right)^2=\sqrt{8x}^2\\ \Rightarrow x^2-12x+36=8x\\ \Rightarrow x^2-20x+36=0\\ \Rightarrow\left(x^2-2x\right)-\left(18x-36\right)=0\)
\(\Rightarrow x\left(x-2\right)-18\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-18\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-18=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=18\end{matrix}\right.\)
1: Ta có: \(16x^2-\left(\sqrt{3}+1\right)^2=0\)
\(\Leftrightarrow\left(4x-\sqrt{3}-1\right)\left(4x+\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+1}{4}\\x=\dfrac{-\sqrt{3}-1}{4}\end{matrix}\right.\)
2: Ta có: \(x-2\sqrt{2x}+2=8\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=2\sqrt{2}\\\sqrt{x}-2=-2\sqrt{2}\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\sqrt{2}+2\)
\(\Leftrightarrow x=12+8\sqrt{2}\)
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha