K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)

Điều kiện: \(x\ge\frac{1}{3}\)

Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)

\(\Rightarrow x=a^2+\frac{1}{3}\)

Ta suy ra phương trình tương đương với

\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)

\(\Leftrightarrow54a^4+30a^2+27a-13=0\)

\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)

Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)

\(\Rightarrow3a-1=0\)

\(\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)

\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{4}{9}\)

29 tháng 7 2017

gõ lại đề 

2 tháng 10 2020

ĐK: \(x\ge\frac{1}{3}\)

Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)

\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)

CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)

Pt đã cho có nghiệm \(x=\frac{4}{9}\)

25 tháng 6 2018

\(\Rightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+10x+8x+80}=\frac{9}{52}\)

\(\Rightarrow\frac{2}{x\left(x+1\right)+3\left(x+1\right)}+\frac{5}{x\left(x+3\right)+8\left(x+3\right)}+\frac{2}{x\left(x+10\right)+8\left(x+10\right)}=\frac{9}{52}\)

\(\Rightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)

\(\Rightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\Rightarrow\frac{x+10-x-1}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\Rightarrow\frac{9}{x^2+11x+10}=\frac{9}{52}\)

\(\Rightarrow x^2+11x+10=52\Rightarrow x^2+2\cdot\frac{11}{2}x+\frac{121}{4}-\frac{81}{4}=52\)

\(\Rightarrow\left(x+\frac{11}{2}\right)^2=\frac{289}{4}\Rightarrow x+\frac{11}{2}=\frac{17}{2}\Rightarrow x=\frac{17}{2}-\frac{11}{2}=\frac{6}{2}=3\Rightarrow x=3\)

25 tháng 6 2018

\(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+80}=\frac{9}{52}\)(ĐKXĐ: x khác -1;-3;-8;-10)

\(\Leftrightarrow\frac{2}{x^2+x+3x+3}+\frac{5}{x^2+3x+8x+24}+\frac{2}{x^2+8x+10x+80}=\frac{9}{52}\)

\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{2\left(x+8\right)\left(x+10\right)+5\left(x+1\right)\left(x+10\right)+2\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)

\(\Leftrightarrow\frac{9x^2+99x+216}{x^4+22x^3+155x^2+374x+240}=\frac{9}{52}\)

\(\Rightarrow468x^2+5148x+11232=9x^4+198x^3+1395x^2+3366x+2160\)

\(\Leftrightarrow9x^4+198x^3+927x^2-1782x-9072=0\)

\(\Leftrightarrow x^4+22x^3+103x^2-198x-1008=0\)

\(\Leftrightarrow x^4-3x^3+25x^3-75x^2+178x^2-534x+336x-1008=0\)

\(\Leftrightarrow x^3\left(x-3\right)+25x^2\left(x-3\right)+178x\left(x-3\right)+336\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+25x^2+178x+336\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2+22x^2+66x+112x+336\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[x^2\left(x+3\right)+22x\left(x+3\right)+112\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+22x+112\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+8x+14x+112\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left[x\left(x+8\right)+14\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+8\right)\left(x+14\right)=0\)

\(\Leftrightarrow\frac{\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}}{\orbr{\begin{cases}x+8=0\\x+14=0\end{cases}}}\Leftrightarrow\frac{\orbr{\begin{cases}x=-3\left(\times\right)\\x=3\end{cases}}}{\orbr{\begin{cases}x=-8\left(\times\right)\\x=-14\end{cases}}}\)(Vì x=-3 và x=-8 không t/m ĐKXĐ)

Vậy tập nghiệm của pt là \(S=\left\{3;-14\right\}.\)

30 tháng 7 2015

Đkiện: x <1 hoặc x \(\ge\frac{3}{2}\)

\(\sqrt{\frac{2x-3}{x-1}}=2\) (1)

(1) => \(\frac{2x-3}{x-1}=4\)

=> 2x - 3 = 4x - 4

<=> 2x - 4x = -4 + 3

<=> -2x = -1

<=> x = \(\frac{1}{2}\)( TMĐK)

Vậy x = \(\frac{1}{2}\)

b, Đkiện: x \(\ge\frac{3}{2}\)

(1) => \(\sqrt{2x-3}=2\sqrt{x-1}\)

=>2x - 3 = 4(x - 1)

<=> 2x -3 = 4x -4

<=> -2x = -1

<=> x = \(\frac{1}{2}\)(ko TMĐK)

Vậy pt vô nghiệm

30 tháng 7 2015

b. \(x>0;x\ne1\)

\(\Rightarrow\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\Rightarrow2x-3=4x-4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

20 tháng 5 2017

mik ko biết vì mới chỉ học lớp 6

20 tháng 5 2017

ĐKXĐ: \(x\ge\frac{1}{2}\)

Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)

Nhân liên hợp ta được:

\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)

mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)

=> x - 2 = 0 => x = 2

                                                   Vậy x = 2

29 tháng 8 2019

\(DK:x\ge0\)

\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)

\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)

\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)

\(\Leftrightarrow x=1\)

Vay nghiem cua PT la \(x=1\)

8 tháng 9 2017

ĐK: \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)

\(pt\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(x+1\right)\sqrt{x^2+2x}+2\left(x+1\right)-4=0\)

Đặt \(\sqrt{x^2+2x}=A;x+1=B\left(A>0\right)\), phương trình trở thành:

\(A^2-AB+2B-4=0\)

\(\Leftrightarrow\left(A^2-4\right)+B\left(2-A\right)=0\)

\(\Leftrightarrow\left(A-2\right)\left(A+2-B\right)=0\Leftrightarrow\orbr{\begin{cases}A-2=0\\A-B+2=0\end{cases}}\)

Trở về phương trình đầu, ta có:

TH1: \(A=2\Rightarrow\sqrt{x^2+2x}=2\Rightarrow x^2+2x=4\Rightarrow\orbr{\begin{cases}x=\sqrt{5}-1\left(n\right)\\x=-\sqrt{5}-1\left(n\right)\end{cases}}\)

TH2: \(\sqrt{x^2+2x}-\left(x+1\right)=-2\Leftrightarrow\sqrt{x^2+2x}=x-1\)

ĐK: x > 1

\(pt\Rightarrow x^2+2x=x^2-2x+1\Rightarrow x=\frac{1}{4}\left(l\right)\)

KL: PT có nghiệm \(x=-\sqrt{5}-1\) và \(x=\sqrt{5}-1\)