Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\left\{0;-1;-2;-3;-4;-5;-6;-7\right\}\)
\(\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}=\frac{1}{x+1}+\frac{1}{x+3}+\frac{1}{x+4}+\frac{1}{x+6}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{x+7}+\frac{1}{x+2}+\frac{1}{x+5}=\frac{1}{x+1}+\frac{1}{x+6}+\frac{1}{x+3}+\frac{1}{x+4}\)
\(\Rightarrow\frac{x+7+x}{x\left(x+7\right)}+\frac{x+5+x+2}{\left(x+2\right)\left(x+5\right)}=\frac{x+6+x+1}{\left(x+1\right)\left(x+6\right)}+\frac{x+4+x+3}{\left(x+3\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x+7}{x^2+7x}+\frac{2x+7}{x^2+7x+10}=\frac{2x+7}{x^2+7x+6}+\frac{2x+7}{x^2+7x+12}\)
\(\Rightarrow\left(2x+7\right)\left(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\right)=0\)
mà \(\frac{1}{x^2+7x}+\frac{1}{x^2+7x+10}-\frac{1}{x^2+7x+6}-\frac{1}{x^2+7x+12}\ne0\)
=> 2x + 7 = 0 => x = -7/2
Vậy x = -7/2
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé