K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Câu a)

\(x^2-xy=6x-5y-8\Leftrightarrow x^2-xy-6x+5y+8=0\Leftrightarrow\left(x-5\right)\left(x-y-1\right)=-3\)

Đến đây bạn tự giải tiếp và tìm nghiệm nha!

Câu c)

\(7x^2=2013-12y^2\Rightarrow7x^2< 2013\Leftrightarrow x\le16\)

Đến đây ta nhận xét rằng vế trái lẻ và chia  hết cho 3. Vậy bạn chỉ cần thử 3 giá trị của x là 3, 9, 15
Hiện tại mình đang bận nên chưa tiện giải hết.
Khi nào mình giải tiếp nha!

30 tháng 10 2023

a) 3x³ + 6x²y

= 3x².(x + 2y)

b) 2x³ - 6x²

= 2x².(x - 2)

c) 18x² - 20xy

= 2x.(9x - 10y)

d) xy + y² - x - y

= (xy + y²) - (x + y)

= y(x + y) - (x + y)

= (x + y)(y - 1)

e) (x²y² - 8)² - 1

= (x²y² - 8 - 1)(x²y² - 8 + 1)

= (x²y² - 9)(x²y² - 7)

= (xy - 3)(xy + 3)(x²y² - 7)

f) x² - 7x - 8

= x² - 8x + x - 8

= (x² - 8x) + (x - 8)

= x(x - 8) + (x - 8)

= (x - 8)(x + 1)

30 tháng 10 2023

a: \(3x^3+6x^2y\)

\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)

b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)

c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)

d: \(xy+y^2-x-y\)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(y-1\right)\)

e: \(\left(x^2y^2-8\right)^2-1\)

\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)

\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)

f: \(x^2-7x-8\)

\(=x^2-8x+x-8\)

\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)

g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)

\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)

\(=2x\left(2x-y\right)\left(5x-3y\right)\)

h: \(x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)

\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)

k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)

\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)

l: \(-2x^2+8xy-8y^2\)

\(=-2\left(x^2-4xy+4y^2\right)\)

\(=-2\left(x-2y\right)^2\)

m: \(3x^2+5x-3y^2-5y\)

\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y+5\right)\)

11 tháng 7 2019

\(a,3x^3y^3-15x^2y^2=3x^2y^2\left(xy-5\right)\)

\(b,5x^3y^2-25x^2y^3+40xy^4\)

\(=5xy^2\left(x^2-5xy+8y^2\right)\)

\(c,-4x^3y^2+6x^2y^2-8x^4y^3\)

\(=-2x^2y^2\left(2x-3+4x^2y\right)\)

\(d,a^3x^2y-\frac{5}{2}a^3x^4+\frac{2}{3}a^4x^2y\)

\(=a^3x^2\left(y-\frac{5}{2}x^2+\frac{2}{3}ay\right)\)

\(e,a\left(x+1\right)-b\left(x+1\right)=\left(x+1\right)\left(a-b\right)\)

\(f,2x\left(x-5y\right)+8y\left(5y-x\right)\)

\(=2x\left(x-5y\right)-8y\left(x-5y\right)=\left(x-5y\right)\left(2x-8y\right)\)

\(g,a\left(x^2+1\right)+b\left(-1-x^2\right)-c\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(a-b-c\right)\)

\(h,9\left(x-y\right)^2-27\left(y-x\right)^3\)

\(=9\left(x-y\right)^2+27\left(x-y\right)^3\)

\(=9\left(x-y\right)^2\left(1+3x-3y\right)\)

11 tháng 7 2019

a,3x3y3−15x2y2=3x2y2(xy−5)

b,5x3y2−25x2y3+40xy4

=5xy2(x2−5xy+8y2)

c,−4x3y2+6x2y2−8x4y3

=−2x2y2(2x−3+4x2y)

d,a3x2y−52a3x4+23a4x2y

=a3x2(y−52x2+23ay)

e,a(x+1)−b(x+1)=(x+1)(a−b)

f,2x(x−5y)+8y(5y−x)

=2x(x−5y)−8y(x−5y)=(x−5y)(2x−8y)

g,a(x2+1)+b(−1−x2)−c(x2+1)

=(x2+1)(a−b−c)

h,9(x−y)2−27(y−x)3

9 tháng 1 2016

ai giup vs 

Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là   x=....y
giải chi tiết nha

10 tháng 1 2016

đáp án là 43 ai thông minh sẽ tick câu trả lời này

3 tháng 10 2021

d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)

\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)^2\le8\)

Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)

Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)

Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)

 

20 tháng 10 2021

a) \(x^5+4x+5=\left(x^5+x^4\right)-\left(x^4+x^3\right)+\left(x^3+x^2\right)-\left(x^2+x\right)+\left(5x+5\right)=x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+5\left(x+1\right)=\left(x^4-x^3+x^2-x+5\right)\left(x+1\right)\)

b) \(x^4+6x^3+11x^2+6x+1=\left(x^4+3x^3+x^2\right)+\left(3x^3+9x^2+3x\right)+\left(x^2+3x+1\right)=x^2\left(x^2+3x+1\right)+3x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)=\left(x^2+3x+1\right)^2\)

c) \(64x^4+1=\left[\left(8x^2\right)^2+16x^2+1\right]-16x^2=\left(8x^2+1\right)^2-\left(4x\right)^2=\left(8x^2-4x+1\right)\left(8x^2+4x+1\right)\)d) \(81x^4+4=\left[\left(9x^2\right)^2+36x^2+2^2\right]-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)

 

20 tháng 10 2021

làm giúp em mấy câu sau với