Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)
Đặt \(3x^2+7x=a\Rightarrow36x^2+84x=12a\)
\(\left(a+4\right)\left(12a+49\right)-6=0\)
\(\Leftrightarrow12a^2+97a+190=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-\frac{10}{3}\\a=-\frac{19}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+7x+\frac{10}{3}=0\\3x^2+7x+\frac{19}{4}=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Nhận thấy \(x=0\) ko phải nghiệm
Với \(x\ne0\) chia 2 vế của pt cho \(x^2\) ta được:
\(6\left(x^2+\dfrac{1}{x^2}\right)-5\left(x+\dfrac{1}{x}\right)-38=0\)
Đặt \(x+\dfrac{1}{x}=t\Rightarrow x^2+\dfrac{1}{x^2}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)-5t-38=0\)
\(\Leftrightarrow6t^2-5t-50=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{10}{3}\\t=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=\dfrac{10}{3}\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x^2-10x+3=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Rightarrow x=\left\{-2;-\dfrac{1}{2};\dfrac{1}{3};3\right\}\)
Ta có:
(6x+8)(6x+6)(6x+7)2 = 72
Đặt \(6x+7=a\)
\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)
\(\Leftrightarrow a^4-a^2-72=0\)
\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)
\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)
Đễ thấy \(a^2+8>0\)
\(\Rightarrow a^2-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)
(36x^2+84x+48)(36x^2+84x+49)=72
dat 36x^2+84x+48=a
phuong trinh da cho co dang
a(a+1)=72
a^2+a-72=0
a=8 hoac a=-9
a=8=>36x^2+84x+48=8
=>x=-2/3 hoac x=-5/3
a=-9=>36x^2+84x+48=-9(vo nghiem)
Xét thấy x = 0 không thỏa mãn pt
Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)
\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)
\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)
\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)
Đặt \(x+\frac{1}{x}=a\)
\(pt\Leftrightarrow6a^2-7a-48=0\)
\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)
\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)
\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)
\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)
\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)
Giải nốt nha bạn. Nghiệm hơi xấu
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
\(\Leftrightarrow\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)
\(\Leftrightarrow t\left(t+1\right)=72\) ( với \(t=36x^2+84x+48\) )
\(\Leftrightarrow t^2+t-72=0\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)
\(\Leftrightarrow t-8=0\) ( do \(t+9=36x^2+84x+49+8=\left(6x+7\right)^2+8>0\forall x\))
\(\Leftrightarrow36x^2+84x+48=8\)
\(\Leftrightarrow\left(6x+7\right)^2=9\Leftrightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\) ( TM )
x=\(\dfrac{-2}{3}\)