Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tách như sau:
\(a^2+b^2+3ab-8a-8b-2\sqrt{3ab}+19=0\)
\(\Leftrightarrow a^2+b^2+2ab-8a-8b+ab-2\sqrt{3ab}+3+16=0\)
\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+\left(\sqrt{ab}-\sqrt{3}\right)^2+16=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-2.\left(a+b\right).4+16\right]+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\left(a+b-4\right)^2+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a+b-4=0\\\sqrt{ab}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=3\end{cases}}\)
Vậy thì phương trình bậc hai có nghiệm a và b là: \(x^2-4x+3=0\).
ĐK x bất kì
\(\sqrt{x^2+24}=24-x^4\)
\(\Leftrightarrow x^2+24=576-48x^4+x^8\)
\(\Leftrightarrow x^8-48x^4-x^2+552=0\)
Giải ra là tìm được x
Bạn xem lại đề, nghiệm của hệ này rất xấu (chính xác là ko thể giải được nếu ko áp dụng công thức nghiệm Cardano của pt bậc 3)