K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

Bạn vào câu hỏi tương tự nhé !!!

8 tháng 12 2015

hai cái đấy giống hệt nhau 

3 tháng 4 2017

Ta tách như sau:

\(a^2+b^2+3ab-8a-8b-2\sqrt{3ab}+19=0\)

\(\Leftrightarrow a^2+b^2+2ab-8a-8b+ab-2\sqrt{3ab}+3+16=0\)

\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+\left(\sqrt{ab}-\sqrt{3}\right)^2+16=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2.\left(a+b\right).4+16\right]+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\left(a+b-4\right)^2+\left(\sqrt{ab}-\sqrt{3}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b-4=0\\\sqrt{ab}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=4\\ab=3\end{cases}}\)

Vậy thì phương trình bậc hai có nghiệm a và b là: \(x^2-4x+3=0\).

14 tháng 12 2020

Áp dụng giả thiết và bất đẳng thức AM - GM, ta được: \(\sqrt{8a^2+48}=\sqrt{8\left(a^2+6\right)}=\sqrt{8\left(a^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le\left(2a+2b\right)+\left(a+2c\right)=3a+2b+2c\)\(\sqrt{8b^2+48}=\sqrt{8\left(b^2+6\right)}=\sqrt{8\left(b^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(b+2c\right)}\le\left(2a+2b\right)+\left(b+2c\right)=2a+3b+2c\)\(\sqrt{4c^2+6}=\sqrt{4c^2+ab+2bc+2ca}=\sqrt{\left(2c+a\right)\left(2c+b\right)}\le\frac{\left(2c+a\right)+\left(2c+b\right)}{2}=\frac{4c+a+b}{2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}\le\frac{11}{2}a+\frac{11}{2}b+6c\)

\(\Rightarrow\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\ge\frac{11a+11b+12c}{\frac{11}{2}a+\frac{11}{2}b+6c}=2\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}ab+2bc+2ca=6\\a+2b=2c;b+2a=2c;a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\sqrt{\frac{6}{7}}\\c=\frac{3\sqrt{42}}{14}\end{cases}}\)

26 tháng 5 2018

Ta có \(\sqrt{8a^2+56}\)\(\sqrt{8\left(a^2+7\right)}\)\(\sqrt{8\left(a^2+ab+2bc+2ca\right)}\)=2. \(\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le\) 2(a+b)+(a+2c) = 3a+2b+2c

tương tự \(\sqrt{8b^2+56}\)\(\le\) 2a+3b+2c

\(\sqrt{4c^2+7}\) =\(\sqrt{4c^2+ab+2ac+2bc}\)\(\sqrt{\left(a+2c\right)\left(b+2c\right)}\)\(\le\)(a+b+4c)/2

mẫu số \(\le\)3a+2b+2c+2a+3b+2c+a/2+b/2+2c=(11a+11b+12c)/2

 \(\Rightarrow\)  Q\(\ge\) 2

dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab+2bc+2ca=7\\2\left(a+b\right)=a+2c=b+2c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

Vây...

2 tháng 6 2019

\(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2bc+2ac\right)}\)\(=\sqrt{8\left(a+b\right)\left(a+2c\right)}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\)

Áp dụng BĐT AM-GM cho các số không âm:

\(\sqrt{8a^2+56}=\sqrt{4\left(a+b\right).2\left(a+2c\right)}\le\frac{4\left(a+b\right)+2\left(a+2c\right)}{2}\)

\(\Rightarrow\)\(\sqrt{8a^2+56}\)\(\le3a+2b+2c\)

Tương tự:

\(\sqrt{8b^2+56}\le2a+3b+2c\),\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)

\(\Rightarrow\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}\le\frac{11a+11b+12c}{2}\)

\(\Rightarrow P\ge\frac{11a+11b+12c}{\frac{11a+11b+12c}{2}}=2\)

\(''=''\Leftrightarrow a=b=\frac{2c}{3}=1\)

11 tháng 10 2019

A= \(a^{2017}\left(a^2-8a+11\right)+b^{2017}\left(b^2-8b+11\right)=\)\(a^{2017}\left(a^2-8a+16-5\right)+b^{2017}\left(b^2-8b+16-5\right)=\)\(a^{2017}\left(\left(a-4\right)^2-\sqrt{5^2}\right)+b^{2017}\left(\left(b-4\right)^2-\sqrt{5^2}\right)\)=\(a^{2017}\left(a-4-\sqrt{5}\right)\left(a-4+\sqrt{5}\right)+b^{2017}\left(b-4-\sqrt{5}\right)\left(b-4+\sqrt{5}\right)\)= 0+0= 0

24 tháng 5 2017

\(\left(x+2\right)\left(x-3\right)\left(x^2+2x-24\right)=16x^2\)

\(\Rightarrow\left(x+2\right)\left(x+6\right)\left(x-3\right)\left(x-4\right)=16x^2\)

\(\Rightarrow\left(x^2+8x+12\right)\left(x^2-7x+12\right)=16x^2\)

Đặt a = x2 + 8x + 12 ta được phương trình:

\(a\left(a-15x\right)=16x^2\)

\(\Rightarrow a^2-15xa-16x^2=0\)

Có: \(\Delta=b^2-4ac=\left(-15x\right)^2-4.\left(-16x^2\right)=289x^2\Rightarrow\sqrt{\Delta}=17x\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{-b+\sqrt{\Delta}}{2a}=\frac{15x+17x}{2}=16x\\a=\frac{-b-\sqrt{\Delta}}{2a}=\frac{15x-17x}{2}=-x\end{cases}}\)

Với a = 16x => x2 + 8x + 12 = 16x => x2 - 8x + 12 = 0 => x = 6 hoặc x = 2

Với a = -x => x2 + 8x + 12 = -x => x2 + 9x + 12 = 0 => \(\orbr{\begin{cases}x=\frac{-9+\sqrt{33}}{2}\\x=\frac{-9-\sqrt{33}}{2}\end{cases}}\)

                                                   Vậy pt có 4 nghiệm trên