K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2022

\(\left\{{}\begin{matrix}\sqrt{x^2+3}+2\sqrt{x}=3+\sqrt{y}\left(1\right)\\\sqrt{y^2+3}+2\sqrt{y}=3+\sqrt{x}\left(2\right)\end{matrix}\right.\)\(\left(đk;x;y\ge0\right)\)

\(\left(1\right)-\left(2\right)\Rightarrow\sqrt{x^2+3}+2\sqrt{x}-\sqrt{y^2+3}-2\sqrt{y}=\sqrt{y}-\sqrt{x}\)

\(\Leftrightarrow\sqrt{x^2+3}-\sqrt{y^2+3}+2\sqrt{x}-2\sqrt{y}+\sqrt{x}-\sqrt{y}=0\left(3\right)\)

\(với:x=y=0\Rightarrow ko\) \(là\) \(nghiệm\)

\(vỡi:x=y\ne0\Rightarrow x;y>0\)

\(\left(3\right)\Leftrightarrow\dfrac{x^2+3-y^2-3}{\sqrt{x^2+3}+\sqrt{y^2+3}}+\dfrac{4x-4y}{2\sqrt{x}+2\sqrt{y}}+\dfrac{x-y}{\sqrt{x}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y\right)\left[\dfrac{x+y}{\sqrt{x^2+3}+\sqrt{y^2+3}}+\dfrac{4}{2\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{x}+\sqrt{y}}>0\left(\forall x;y>0\right)\right]=0\)

\(\Rightarrow x=y\left(4\right)\)

\(\left(4\right)và\left(1\right)\Rightarrow\sqrt{x^2+3}+2\sqrt{x}=3+\sqrt{x}\Leftrightarrow\sqrt{x^2+3}+\sqrt{x}-3=0\)

\(\Leftrightarrow\sqrt{x^2+3}-2+\sqrt{x}-1=0\Leftrightarrow\dfrac{x^2+3-4}{\sqrt{x^2+3}+2}+\dfrac{x-1}{\sqrt{x}+1}=0\Leftrightarrow\left(x-1\right)\left[\dfrac{x+1}{\sqrt{x^2+3}+2}+\dfrac{1}{\sqrt{x}+1}>0\left(\forall x>1\right)\right]=0\Leftrightarrow x=y=1\)

14 tháng 12 2021

\(ĐK:x\ge0;y\ge2;5x-y\ge0\\ PT\left(1\right)\Leftrightarrow\sqrt{y+3x}-\sqrt{5x-y}+\sqrt{2x+7y}-3\sqrt{x}=0\\ \Leftrightarrow\dfrac{2y-2x}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7y-7x}{\sqrt{2x+7y}+3\sqrt{x}}=0\\ \Leftrightarrow\left(y-x\right)\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}\right)=0\\ \Leftrightarrow x=y\left(\dfrac{2}{\sqrt{y+3x}+\sqrt{5x-y}}+\dfrac{7}{\sqrt{2x+7y}+3\sqrt{x}}>0\right)\)

Thay vào \(PT\left(2\right)\Leftrightarrow x-4+\sqrt{x-2}=\sqrt{x^3-10x^2+33x-34}-\sqrt{x^3-9x^2+24x-16}\)

\(\Leftrightarrow\dfrac{x^2-9x+18}{x-4+\sqrt{x-2}}=\dfrac{-x^2+9x-18}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\\ \Leftrightarrow\left(x^2-9x+18\right)\left(\dfrac{1}{x-4+\sqrt{x-2}}+\dfrac{1}{\sqrt{x^3-10x^2+33x-34}+\sqrt{x^3-9x^2+24x-16}}\right)=0\\ \Leftrightarrow x^2-9x+18=0\left(\text{ngoặc lớn luôn }>0,\forall x\ge2\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=y=3\\x=y=6\end{matrix}\right.\)

Vậy ...

AH
Akai Haruma
Giáo viên
6 tháng 1 2020

Lời giải:

ĐK: $xy\geq 0$

Xét PT $(1)$:

\(x+y=1+\sqrt{xy}(*)\Rightarrow (x+y)^2=(1+\sqrt{xy})^2\)

\(\Leftrightarrow x^2+y^2=1+2\sqrt{xy}-xy=2-(\sqrt{xy}-1)^2\leq 2\)

Xét PT $(2)$:

Áp dụng BĐT AM-GM:

\(\sqrt{x^2+3}+\sqrt{y^2+3}\leq \frac{4+(x^2+3)}{4}+\frac{4+(y^2+3)}{4}=\frac{14+x^2+y^2}{4}\leq \frac{14+2}{4}=4\)

Dấu "=" xảy ra khi : \(\left\{\begin{matrix} \sqrt{xy}-1=0\\ x^2+3=4\\ y^2+3=4\end{matrix}\right.\Rightarrow x=y=\pm 1\)

Mặt khác từ $(*)$ suy ra $x+y>0$ nên $x=y=1$ là đáp án cuối cùng.

Akai Haruma Vũ Minh Tuấn buithianhtho giúp e với ạ

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 1: ĐK: $x\geq 1$

Xét PT(1):

\(x^2+xy(2y-1)=2y^3-2y^2-x\)

\(\Leftrightarrow x^2-xy+x+(2xy^2-2y^3+2y^2)=0\)

\(\Leftrightarrow x(x-y+1)+2y^2(x-y+1)=0\)

\(\Leftrightarrow (x-y+1)(x+2y^2)=0\)

\(\Rightarrow \left[\begin{matrix} y=x+1\\ 2y^2=-x\end{matrix}\right.\)

Nếu $y=x+1$, thay vào PT(2):

$\Rightarrow 6\sqrt{x-1}+x+8=4x^2$

$\Leftrightarrow 4(x^2-4)-6(\sqrt{x-1}-1)-(x-2)=0$

\(\Leftrightarrow 4(x-2)(x+2)-6.\frac{x-2}{\sqrt{x-1}+1}-(x-2)=0\)

\(\Leftrightarrow (x-2)\left[4(x+2)-\frac{6}{\sqrt{x-1}+1}-1\right]=0\)

Với mọi $x\geq 1$ dễ thấy:

$4(x+2)\geq 12$

\(\frac{6}{\sqrt{x-1}+1}+1\leq 6+1=7\)

Suy ra biểu thức trong ngoặc vuông lớn hơn $0$

$\Rightarrow x-2=0\Rightarrow x=2$ (thỏa mãn)

$\Rightarrow y=x+1=3$

Nếu $2y^2=-x\Rightarrow -x\geq 0\Rightarrow x\leq 0$ (vô lý do $x\geq 1$)

Vậy $(x,y)=(2,3)$

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Câu 2:

Nếu như bạn nói những bài toán này được giải theo kiểu đưa về phân tích thành nhân tử thì đề bài của bạn có lẽ sai vì không pt nào trong câu này đưa được về dạng tích. Mình thấy PT(1) có lẽ cần sửa lại thành:

\(x\sqrt{x^2+y}+y=\sqrt{x^4+x^3}+x\)

ĐKXĐ: $x\geq 1; y\geq 0$

Với $x\geq 1; y\geq 0$. Xét PT(1):

\(\Leftrightarrow (x\sqrt{x^2+1}-\sqrt{x^4+x^3})+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(x^2+y)-(x^4+x^3)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow \frac{x^2(y-x)}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+(y-x)=0\)

\(\Leftrightarrow (y-x)\left[\frac{x^2}{x\sqrt{x^2+y}+\sqrt{x^4+x^3}}+1\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq 1; y\geq 0$ nên $y-x=0\Rightarrow y=x$

Thay vào PT(2):

$x+\sqrt{x}+\sqrt{x-1}+\sqrt{x(x-1)}=\frac{9}{2}$

\(\Leftrightarrow 2x+2\sqrt{x}+2\sqrt{x-1}+2\sqrt{x(x-1)}-9=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1})^2+2(\sqrt{x}+\sqrt{x-1})-8=0\)

\(\Leftrightarrow (\sqrt{x}+\sqrt{x-1}-2)(\sqrt{x}+\sqrt{x-1}+4)=0\)

Dễ thấy \(\sqrt{x}+\sqrt{x-1}+4>0\) nên $\sqrt{x}+\sqrt{x-1}=2$

$\Rightarrow 2x-1+2\sqrt{x(x-1)}=4$

$\Leftrightarrow 5-2x=2\sqrt{x(x-1)}$

Tiếp tục bình phương kết hợp với điều kiện $x\leq \frac{5}{2}$ ta tìm được $x=\frac{25}{16}$

Vậy $x=y=\frac{25}{16}$

NV
11 tháng 12 2018

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy}=81\\x+y+3\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=125\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y+2\sqrt{xy}=81\\x+y+15\sqrt[3]{xy}=125\end{matrix}\right.\)

Đặt \(\sqrt[6]{xy}=t>0\Rightarrow\left\{{}\begin{matrix}x+y+2t^3=81\\x+y+15t^2=125\end{matrix}\right.\)

\(\Rightarrow2t^3-15t^2+44=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\dfrac{11+3\sqrt{33}}{4}\\t=\dfrac{11-3\sqrt{33}}{4}< 0\left(l\right)\end{matrix}\right.\)

\(t=\dfrac{11+3\sqrt{33}}{4}\Rightarrow x+y=81-2t^3< 0\) (loại)

\(t=2\Rightarrow\left\{{}\begin{matrix}xy=t^6=64\\x+y=81-2t^3=65\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy=64\\y=65-x\end{matrix}\right.\)

\(\Rightarrow x\left(65-x\right)=64\Rightarrow x^2-65x+64=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=64\\x=64\Rightarrow y=1\end{matrix}\right.\)

Vậy nghiệm của hệ đã cho là \(\left(x;y\right)=\left(64;1\right);\left(1;64\right)\)

17 tháng 12 2018

Nếu bạn gặp khó với dấu căn, nếu căn thức làm bạn hoang mang, không sao. Hãy giải hệ đối xứng loại 1 sau đây: \(\left\{{}\begin{matrix}a^3+b^3=9\\a^2+b^2=5\end{matrix}\right.\) Với \(a=\sqrt[6]{x};b=\sqrt[6]{y}\)

16 tháng 2 2020

ĐKXĐ: x,y \(\ge\)0.

Ta có: \(\sqrt{x}\left(\sqrt{x+3}+\sqrt{x}\right)=3\)

\(\Leftrightarrow\sqrt{x\left(x+3\right)}=3-x\)

\(\Rightarrow x\left(x+3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow9x=9\)

\(\Leftrightarrow x=1\) (thỏa điều kiện)

Thay x=1 vào phương trình dưới:

\(\sqrt{x}+\sqrt{y}=x+1\)

\(\Leftrightarrow y=1\)

Vậy tập nghiệm của hệ phương trình là: (x;y)=(1;1)

19 tháng 7 2020

giup tui mấy bài toán tui mới đăng nhaa :33

NV
19 tháng 7 2020

3.

ĐKXĐ: ...

Trừ vế cho vế ta được:

\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)

\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)

\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)

\(\Leftrightarrow x=y\) (ngoặc to luôn dương)

Thay vào pt đầu:

\(2x-2=x+\sqrt{x-2}\)

\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)