Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UWCLN (5n+7;3n+4)=d(dϵN*)
=>(5n+7)⋮d=>3(5n+7)⋮d=>(15n+21)⋮d
=>(3n+4)⋮d=>5(3n+4)⋮d=>(15n+20)⋮d
=>[(25n+21)-(15n+20)]⋮d
=>1⋮d mà dϵN*=>d=1
=>UCLN(5n+7;3n+4)=1
vậy 5n+7 và 3n+4 là 2 số nguyên tố cùng nhau
Chúc bạn học zỏi
Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )
=> 2n+3 và 3n+4 đều chia hết cho d
=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d
=> 6n+9 và 6n+8 đều chia hết cho d
=> 6n+9-(6n+8) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 2n+3 và 3n+4 là 1
=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
k mk nha
thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<
Gọi a là ước chung của ( 2n+1 ) và ( 3n +1)
Suy ra ( 2n+1 ) chia hết cho a và ( 3n +1) chia hết cho a
3. ( 2n+1 )-2. ( 3n +1) chia hết cho a
Hay 1 chia hết cho a suy ra a=1. Vậy ƯCLN của 2 số đó =1
Ta có :
gọi k là UCLN của 2n+1 và 3n+1
=> 3(2n+1) \(⋮k\)
=> 2(3n+1)\(⋮k\)
=> 3(2n+1)-2(3n+1)\(⋮k\)
=> 1\(⋮k\)
Vì k >o
=> k=1
=> đpcm
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;
ƯCLN (7;10) = 1
a: Gọi d là ước chung lớn nhất của 3n+4 và n+1
=>\(\left\{{}\begin{matrix}3n+4⋮d\\n+1⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3n+4⋮d\\3n+3⋮d\end{matrix}\right.\)
=>\(3n+4-3n-3⋮d\)
=>\(1⋮d\)
=>d=1
=>n+1 và 3n+4 là hai số nguyên tố cùng nhau
b: Gọi d là ước chung lớn nhất của 7n+10 và 5n+7
=>\(\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\)
=>\(35n+50-35n-49⋮d\)
=>\(1⋮d\)
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
c: Gọi d là ước chung lớn nhất của 14n+3 và 21n+4
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>14n+3 và 21n+4 là hai số nguyên tố cùng nhau
Gọi ƯCLN(3n+4; 5n+7) là d. Ta có:
3n+4 chia hết cho d => 15n+20 chia hết cho d
5n+7 chia hết cho d => 15n+21 chia hết cho d
=> 15n+21-(15n+20) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(3n+4; 5n+7) = 1
=> 3n+4 và 5n+7 nguyên tố cùng nhau (Đpcm)