Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác vuông ABM và ACM có:
\(\widehat{B}\)=\(\widehat{C}\)( do tam giác ABC cân tại A )
AB = AC ( do tam giác ABC cân tại A )
Vậy tam giác ABM = tam giác ACM ( ch-gn)
\(\Rightarrow\)MB = MC
b) Ta có: BM=MC
Mà BM + MC= BC \(\Rightarrow\)BM= MC= \(\frac{BC}{2}\)= \(\frac{24}{2}\)=6cm
Tam giác ABM vuông tại M
Áp dụng định lí Py-ta-go ta có:
AB2 = AM2 + MB2
\(20^2\) = AM2 + \(6^2\)
AM2 = \(20^2\)- \(6^2\)
AM2 = 364
AM = \(\sqrt{364}\)
mk bt làm câu a, b thôi. Thông Cảm nha ^^
A) XÉT \(\Delta ABC\)VUÔNG TẠI
CÓ AM LÀ TRUNG TUYẾN \(\Rightarrow AM=\frac{1}{2}BC\Leftrightarrow AM=BM=CM\)
XÉT TAM GIÁC AMC CÓ AM=CM => TAM GIÁC AMC CÂN TẠI M
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ TIA PHÂN GIÁC => MH LÀ PHÂN GIÁC CỦA \(\widehat{AMC}\)
\(\Rightarrow\widehat{AMH}=\widehat{HMC}\)
XÉT \(\Delta AMH\)VÀ \(\Delta CMH\)CÓ
\(AM=MC\left(CMT\right)\)
\(\widehat{AMH}=\widehat{HMC}\left(CMT\right)\)
MH LÀ CẠNH CHUNG
=>\(\Delta AMH\)=\(\Delta CMH\)(C-G-C)
=> AH= CH ( HAI CẠNH TƯƠNG ỨNG)
=> BH LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC ABC
VÌ HAI TĐƯỜNG TRUNG TUYẾN AM VÀ BH CẮT NHAU TẠI G
=> G LÀ TRỌNG TÂM CỦA TAM GIÁC ABC
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
CÓ AM LÀ TRUNG TUYẾN
\(\Rightarrow AM=\frac{1}{2}BC\left(Đ/L\right)\)P/S CHỈ ÁP DỤNG TRAM GIÁC GIÁC VUÔNG
c) Tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, bạn lên mạng tham khảo , EZ
a) AM = MC nên tam giác AMC cân tại M nên MH là đường cao cũng là trung tuyến hay H là trung điểm của AC nên BH là trung tuyến của tam giác ABC
Mà AM cũng là trung tuyến của tam giác ABC nên G trọng tâm của tam giác ABC
a, Xét t/g BAM và t/g BHM có: góc BAM = góc CAM (gt)
=> AM = MH (quan hệ giữa góc và cạnh đối diện)
b, Ta có: góc BAC = 90 độ (gt)
góc BHM = 90 độ (MH _|_ BC)
=> góc BAC = góc BHM
Xét t/g AIM và t/g HCM có: góc BAC = góc BHM (cmt)
=> IM = MC (quan hệ giữa góc và cạnh đối diện)
bạn viết bị nhầm phải ko ?g(x) chứ ko phải là g(a)???/
Mình chỉ biết làm phần a, và b, thôi. Mong bạn thông cảm
\(a,\text{Ta có: M là trung điểm của BC}\Rightarrow BM=CM\)
\(\text{Xét }\Delta MHB\text{ và }\Delta MKCcó:\)
\(MH=MK\left(gt\right)\left(1\right)\)
\(\widehat{HMB}=\widehat{KMC}\left(\text{đối đỉnh}\right)\left(2\right)\)
\(BM=CM\left(cmt\right)\left(3\right)\)
\(\text{Từ (1), (2) và (3)}\Rightarrow\Delta MHB=\Delta MKC\left(c.g.c\right)\left(đpcm\right)\)
\(b,\text{Do }MH\perp AB\left(gt\right)\Rightarrow\widehat{BHM}=\widehat{AHM}=90^o\)
\(\text{Do }\Delta MHB=\Delta MKC\left(\text{câu a}\right)\)
\(\Rightarrow\widehat{BHM}=\widehat{CKM}\left(\text{2 góc tương ứng}\right)\left(4\right)\)
\(\text{Mà }\widehat{BHM}=90^o\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\widehat{BHM}=\widehat{CKM}=90^o\left(6\right)\)
\(\text{Mà 2 góc này ở vị trí so le trong của 2 đường thẳng BH và CK}\left(7\right)\)
\(\text{Từ (6) và (7)}\Rightarrow BH\text{//}CK\left(\text{dấu hiệu nhận biết}\right)\)
\(\text{Hay }AH\text{//}CK\)
\(\Rightarrow\widehat{HAK}=\widehat{CKA}\left(\text{2 góc so le trong}\right)\)
\(\text{Ta có: }\widehat{AHM}+\widehat{IAH}=90^o+90^o=180^o\left(do\widehat{AHM}=\widehat{IAH}=90^o\right)\)
\(\text{Hay }\widehat{KHA}+\widehat{CAH}=180^o\left(8\right)\)
\(\text{2 góc này ở vị trí trong cùng phía của 2 đường thẳng CA và HK}\left(9\right)\)
\(\text{Từ (8) và (9)}\Rightarrow CA\text{//}HK\left(\text{dấu hiệu nhận biết}\right)\)
\(\Rightarrow\widehat{HKA}=\widehat{CAK}\left(\text{2 góc so le trong}\right)\)
\(\text{Xét }\Delta AHK\text{ và }\Delta KCAcó:\)
\(\widehat{HAK}=\widehat{CKA}\left(cmt\right)\left(10\right)\)
\(AK\text{ chung}\left(11\right)\)
\(\widehat{HKA}=\widehat{CAK}\left(cmt\right)\left(12\right)\)
\(\text{Từ (10), (11) và (12)}\Rightarrow\Delta AHK=\Delta KCA\left(g.c.g\right)\)
\(\Rightarrow HK=AC\left(\text{2 cạnh tương ứng}\right)\)
Chú ý: Do hoc24 không có cái dấu ngoặc cả 3 vào để suy ra 2 tam giác bằng nhau nên mình đánh dấu (1),(2),(3),... để suy ra nha, nếu bạn ghi vào vở thì chỉ cần ngoặc cả 3 cái vào rồi suy ra thôi
Để gõ hệ (hoặc các trường hợp dạng "hoặc"), ở dạng công thức trực quan em làm theo thứ tự khoanh đỏ:
Sau đó:
Sau đó chọn loại hệ cần:
Nếu latex thì nhập vào hộp lệnh công thức:
\begin{cases} (các trường hợp cách nhau bằng \\) \end{cases}
Ví dụ: như em muốn để hệ 3 dạng tam giác bằng nhau thì nhập lệnh vào hộp TEX:
\begin{cases} \widehat{HAK}=\widehat{CKA}\\ AK \text{ chung} \\ \widehat{HKA}=\widehat{CAK} (\text{cmt}) \end{cases}
Nó sẽ hiển thị như sau:
\(\begin{cases} \widehat{HAK}=\widehat{CKA}\\ AK \text{ chung} \\ \widehat{HKA}=\widehat{CAK} (\text{cmt}) \end{cases}\)
Cần thêm các dòng lệnh nữa thì cứ thêm "\\ + lệnh" thôi
BÀi j z !!
????????