Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trừ vế cho vế:
\(\Rightarrow2x^2-2-2y^2-4y+2x\sqrt{x^2+1}=2\left(y+1\right)\sqrt{y^2+2y+2}\)
\(\Leftrightarrow x^2+x\sqrt{x^2+1}=\left(y+1\right)^2+\left(y+1\right)\sqrt{\left(y+1\right)^2+1}\)
Xét hàm \(f\left(t\right)=t^2+t\sqrt{t^2+1}\)
\(f'\left(t\right)=\frac{\left(\sqrt{t^2+1}+t\right)^2}{\sqrt{t^2+1}}>0\) ;\(\forall t\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow x=y+1\)
Thay xuống pt dưới:
\(\left(y+1\right)^2+2y^2-2\left(y+1\right)+4y-3=0\Leftrightarrow...\)
\(\hept{\begin{cases}2y=2x^2-3x\left(1\right)\\x^2+y^2-2x-y=0\left(2\right)\end{cases}}\)
Từ PT (1) suy ra \(y=\frac{2x^2-3x}{2}\), thay vào phương trình (2), ta được:
\(x^2+\frac{\left(2x^2-3x\right)^2}{4}-2x-\frac{2x^2-3x}{2}=0\)
\(\Leftrightarrow\frac{4x^4-12x^3+9x^2-2x}{4}=0\)\(\Leftrightarrow4x^4-12x^3+9x^2-2x=0\)\(\Leftrightarrow x\in\left\{2;\frac{1}{2};0\right\}\)
Từ đây tự tìm nốt nhé
\(x^3+2x-2x^2-4+x^2y+2y=0\)
\(\Leftrightarrow x\left(x^2+2\right)-2\left(x^2+2\right)+y\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x+y-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow x+y-2=0\Rightarrow y=2-x\)
Thay vào pt dưới:
\(x^2-x\left(2-x\right)-4x-1=\sqrt{4x+5}\) (ĐKXĐ:...)
\(\Leftrightarrow2x^2-6x-1=\sqrt{4x+5}\)
\(\Rightarrow\left(2x^2-6x-1\right)^2=4x+5\)
\(\Leftrightarrow x^4-4x^3+3x^2+x-1=0\)
\(\Leftrightarrow\left(x^2-4x+1\right)\left(x^2-2x-1\right)=0\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)
\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)
\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)
Thế vào pt dưới:
\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
\(\left\{{}\begin{matrix}x^2+2x-2y^2=0\\y^2+2y-2x^2=0\end{matrix}\right.\)\(\left(1\right)-\left(2\right)\Rightarrow x^2+2x-2y^2-y^2-2y+2x^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x+3y+2\right)=0\Leftrightarrow\left(x-y\right)3\left(x+y+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\left(2\right)\\x=-\dfrac{2}{3}-y\left(3\right)\end{matrix}\right.\)
\(thế\left(2\right)và\left(3\right)lên-hệ-pt-rồi-giải\)