Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chỉ cần áp dụng cái phân tích đa thức thành nhân tử bằng phương pháo đặt nhân tử chung là ra rồi
\(d,=\dfrac{3y}{5x\left(x-y\right)}\\ e,=\dfrac{5x\left(x+2\right)\left(2-x\right)}{4\left(x-2\right)\left(x+2\right)}=\dfrac{-5x}{4}\\ f,=\dfrac{3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(6-x\right)}=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\\ g,=\dfrac{3xy\left(x-3y\right)\left(x+3y\right)}{2x^2y^2\left(x-3y\right)}=\dfrac{3\left(x+3y\right)}{2xy}\\ h,=\dfrac{45x^2y\left(x-y\right)\left(x+y\right)}{10xy\left(y-x\right)}=\dfrac{-9x\left(x+y\right)}{2}\\ i,=\dfrac{12\left(a-b\right)\left(a+b\right)\left(a^2+ab+b^2\right)}{3\left(a+b\right)\left(a-b\right)^2}=\dfrac{4\left(a^2+ab+b^2\right)}{a-b}\)
e: \(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=-\dfrac{5}{2}\)
40: Ta có: \(A=27x^3+8y^3-3x-2y\)
\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)
\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)
24: Ta có: \(A=10ax-5ay+2x-y\)
\(=5a\left(2x-y\right)+\left(2x-y\right)\)
\(=\left(2x-y\right)\left(5a+1\right)\)
25: Ta có: \(A=10ax-5ay-2x+y\)
\(=5a\left(2x-y\right)-\left(2x-y\right)\)
\(=\left(2x-y\right)\left(5a-1\right)\)
e: \(\dfrac{12-3x}{2x+6}-3>0\)
\(\Leftrightarrow\dfrac{12-3x-6x-18}{2x+6}>0\)
\(\Leftrightarrow\dfrac{-9x+6}{2x+6}>0\)
\(\Leftrightarrow\dfrac{3x-2}{x+3}< 0\)
=>-3<x<2/3
Câu 3e
\(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
c: Xét ΔANB có
EM//NB
E là trung điểm của AB
=>M là trung điểm của AN
=>AM=MN
Xét ΔDMC có
F là trung điểm của CD
FN//DM
=>N là trung điểm của CM
=>CN=NM=AM
AM+MO=AO
CN+NO=CO
mà AO=CO và AM=Cn
nên MO=NO
=>O là trung điểm của MN
=>M đối xứng N qua O
a: \(=\dfrac{\left(x+1\right)\left(2x-1\right)+x^2-3x^2}{x\left(2x-1\right)}\)
\(=\dfrac{2x^2-x+2x-1+\left(-2x^2\right)}{x\left(2x-1\right)}\)
\(=\dfrac{x-1}{x\left(2x-1\right)}\)
b: Để B=0 thì x-1=0
=>x=1