Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của mảnh đất là x (25<x<50)
Chiều rộng của mảnh đất là: \(50-x\) (m)
Diện tích mảnh đất ban đầu: \(x\left(50-x\right)\)
Chiều dài và chiều rộng mảnh đất sau khi mở lối đi lần lượt là: \(x-2\) và \(48-x\)
Diện tích phần đất trồng rau: \(\left(x-2\right)\left(48-x\right)\)
Ta có pt:
\(\left(x-2\right)\left(48-x\right)=\dfrac{84}{100}x\left(50-x\right)\)
\(\Rightarrow x^2-50x+600=0\Rightarrow\left[{}\begin{matrix}x=20\left(loại\right)\\x=30\end{matrix}\right.\)
Vậy chiều rộng mảnh đất là 20 (m)
\(\widehat{BME}=\widehat{BMK}\) (do K đối xứng E qua MB)
Mà \(\widehat{BMK}=\widehat{BCM}\) (cùng phụ \(\widehat{MBC}\))
\(\Rightarrow\widehat{BME}=\widehat{BCM}\)
\(\Rightarrow ME\) là tiếp tuyến của (O) tại M
Tương tự, ta có MF là tiếp tuyến của (O) tại M
\(\Rightarrow M;E;F\) thẳng hàng
\(\Rightarrow S_{BEFC}=S_{BEMK}+S_{CFMK}=2S_{BMK}+2S_{CMK}=2S_{MBC}\)
Mà \(S_{MBC}=\dfrac{1}{2}MK.BC\Rightarrow S_{MBC-max}\) khi \(MK_{max}\)
\(\Rightarrow M\) nằm chính giữa cung BC \(\Rightarrow MK_{max}=R=4\left(cm\right)\)
\(\Rightarrow S_{BEFC-max}=2.\dfrac{1}{2}.4.8=32\left(cm^2\right)\)
để A là số nguyên thì \(x-9-5⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\inƯ\left(5\right)\)
\(\Leftrightarrow\sqrt{x}+3=5\)
hay x=4
TH1: \(x=14\Rightarrow A=0\) (thỏa mãn)
TH2: \(x\ne14\Rightarrow A\) nguyên khi \(x\) là SCP và \(\dfrac{x-14}{\sqrt{x}+3}\in Z\Rightarrow\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-5}{\sqrt{x}+3}\in Z\)
\(\Rightarrow\sqrt{x}-3-\dfrac{5}{\sqrt{x}+3}\in Z\)
\(\Rightarrow\dfrac{5}{\sqrt{x}+3}\in Z\Rightarrow\sqrt{x}+3=Ư\left(5\right)=5\) (do \(\sqrt{x}+3\ge3\))
\(\Rightarrow x=4\)
Vậy \(x=\left\{4;14\right\}\) có 2 giá trị
2:
1+cot^2a=1/sin^2a
=>1/sin^2a=1681/81
=>sin^2a=81/1681
=>sin a=9/41
=>cosa=40/41
tan a=1:40/9=9/40
a) P rút gọn lại là = x(x-1)
b) Để P = 2 => \(x^2\)- x -2 = 0
=> x = 2 hay x = -1
c) Để P<12 => \(x^2\) - x -12< 0
=> (x-4)(x+3) <0
=> x-4 <0<x+3
=> x<4 hay x >-3
Vậy, -3<x<4 thì P<12
d) GTNN của P = \(x^2\)- x
= \(x^2\)- x +1/4 -1/4
= (x-1/2)\(^2\)-1/4 >= -1/4
Vậy, GTNN của x là -1/4 khi và chỉ khi x = 1/2
Nhớ like giúp mik nha bạn. Thx bạn nhìu:33
a) Ta có: \(P=\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{1}{x\sqrt{x}-x}\)
\(=\dfrac{x\sqrt{x}+x-2-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{x\left(\sqrt{x}-1\right)}{1}\)
\(=\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}+1}\cdot x\)
\(=\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\cdot x\)
\(=x^2-x\)
Gọi AB là dây cung qua M, H là trung điểm AB \(\Rightarrow OH\perp AB\) và \(OH\le OM=3\)
Áp dụng định lý Pitago:
\(OH^2+AH^2=OA^2=25\)
\(\Rightarrow AB=2AH=2\sqrt{25-OH^2}\)
AB nguyên khi \(25-OH^2=\dfrac{k^2}{4}\)
\(\Rightarrow OH^2=25-\dfrac{k^2}{4}\)
\(0\le OH\le3\Rightarrow0\le OH^2\le9\)
\(\Rightarrow0\le25-\dfrac{k^2}{4}\le9\)
\(\Rightarrow64\le k^2\le100\Rightarrow8\le k\le10\)
\(\Rightarrow k=\left\{8;9;10\right\}\) có 3 giá trị nguyên