K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

mà \(x^2+1>0\forall x\)

nên x+1=0

hay x=-1

Vậy: S={-1}

b) Ta có: \(x^3-6x^2+11x-6=0\) 

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={1;2;3}

c) Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow x^3-3x^2+2x^2-6x-15x+45=0\)

\(\Leftrightarrow x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+2x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+5x-3x-15\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy: S={3;-5}

d) Ta có: \(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\cdot\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+3x^2+x^2+4x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+3\right)+\left(x+1\right)\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)

mà \(x^2+x+1>0\forall x\)

nên (x-2)(x+3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy: S={2;-3}

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

18 tháng 4 2017

A. \(\left(x+6\right)\left(3x-1\right)+x+6=0\)

\(\Leftrightarrow\left(x+6\right)\left(3x-1+1\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot3x=0\)

\(\Rightarrow\left[{}\begin{matrix}x+6=0\\3x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

Vậy.................................

B. \(\left(x+4\right)\left(5x+9\right)-x-4=0\)

\(\Leftrightarrow\left(x+4\right)\left(5x+9\right)-\left(x+4\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+9-1\right)=0\\ \Leftrightarrow\left(x+4\right)\left(5x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\5x+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{-8}{5}\end{matrix}\right.\)

Vậy.......................................

18 tháng 4 2017

thanks

28 tháng 6 2019

Đây là phương trình đối xứng, cách giải những bài phương trình đối xứng khác cũng giống vậy nhé!

Xét x = 0 không phải là nghiệm của phương trình

Chia cả hai vế của phương trình cho x2, ta được:

\(2x^2-21x+74-\frac{105}{x}+\frac{50}{x^2}=0\\ \Rightarrow\left(2x^2+\frac{50}{x^2}\right)-\left(21x+\frac{105}{x}\right)+74=0\\ \Rightarrow2\left(x^2+\frac{25}{x^2}\right)-21\left(x+\frac{5}{x}\right)+74=0\)

Đặt \(x+\frac{5}{x}=y\Rightarrow x^2+\frac{25}{x^2}=y^2-10\)

Thay vào phương trình, ta được:

\(2\left(y^2-10\right)-21y+74=0\\ \Rightarrow2y^2-20-21y+74=0\\ \Rightarrow2y^2-21y+54=0\\ \Rightarrow\left(2y^2-12y\right)-\left(9y-54\right)=0\\ \Rightarrow2y\left(y-6\right)-9\left(y-6\right)=0\\ \Rightarrow\left(y-6\right)\left(2y-9\right)=0\\ \Rightarrow\left(x+\frac{5}{x}-6\right)\left(2x+\frac{10}{x}-9\right)=0\\ \Rightarrow x=1;x=2\)

28 tháng 6 2019

\(PT\Leftrightarrow\left(x^4-x^3\right)-\left(6x^3-6x^2\right)+\left(12x^2-12x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow x^3\left(x-1\right)-6x^2\left(x-1\right)+12x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(3x-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) (do \(x^2-3x+3>0\forall x\))

Vậy..

29 tháng 10 2021

a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

27 tháng 6 2019

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+5\right)=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+5=5\\x^2+5x+5=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\\left(x+\frac{5}{2}\right)^2=-\frac{15}{4}\left(VL\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) ( TM )

3 tháng 6 2018

a) X^3-x^2-21x+45=0

x^3-3x^2+2x^2-6x-15x+45=0

x^2(x-3)+2x(x-3)-15(x-3)=0

(x-3)(x^2+2x-15)=0

(x-3)(x^2-3x+5x-15)=0

(x-3)[x(x-3)+5(x-3)]=0

(x-3)^2(x+5)=0

<=> x=3 hoặc x=-5

Câu 2 đề ko rõ lắm bn sửa lại đề để mk giải hộ nha

3 tháng 6 2018

Bích Ngọc bạn xem lời giải dưới đây nhé :

X^3-x^2-21x+45=0\(\Leftrightarrow\)(x+5)(x^2-6x+9)=0

\(\Leftrightarrow\)(x+5)(x-3)^2=0

Rồi đó tới đây bạn tự tìm x nhé!