Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)
b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)
x2 - 5 = 0
Δ = b2 - 4ac = 0 + 20 = 20
Δ > 0, áp dụng công thức nghiệm thu được x = ±√5
x2 - 2√11x + 11 = 0
Δ = b2 - 4ac = 44 - 44 = 0
Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11
a ) x 2 – 5 = 0 ⇔ x 2 = 5 ⇔ x 1 = √ 5 ; x 2 = - √ 5
Vậy phương trình có hai nghiệm x 1 = √ 5 ; x 2 = - √ 5
Cách khác:
x 2 – 5 = 0 ⇔ x 2 – ( √ 5 ) 2 = 0
⇔ (x - √5)(x + √5) = 0
hoặc x - √5 = 0 ⇔ x = √5
hoặc x + √5 = 0 ⇔ x = -√5
b)
x 2 – 2 √ 11 x + 11 = 0 ⇔ x 2 – 2 √ 11 x + ( √ 11 ) 2 = 0 ⇔ ( x - √ 11 ) 2 = 0
⇔ x - √11 = 0 ⇔ x = √11
Vậy phương trình có một nghiệm là x = √11
a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)
<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)
b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)
=>\(x+\sqrt{11}=0\)
=> x=\(\sqrt{11}\)
a, \(x=\dfrac{2}{\sqrt{7}-\sqrt{5}}=\dfrac{2\left(\sqrt{7}+\sqrt{5}\right)}{2}=\sqrt{7}+\sqrt{5}\)
b, Ta có a + b + c = 1 + 10 - 11 = 0
Vậy pt có 2 nghiệm là x = 1 ; x = -11
c, \(\Leftrightarrow\left(x^2-3\right)^2=0\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
b; \(\text{Δ}=1^2-4\cdot\left(-2\right)\cdot\left(-3\right)=1-4\cdot6=-23< 0\)
Do đó: Phương trình vô nghiệm
c: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot11=1+44=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-3\sqrt{5}}{-2}=\dfrac{3\sqrt{5}-1}{2}\\x_2=\dfrac{-3\sqrt{5}-1}{2}\end{matrix}\right.\)
a, \(\Delta'=2-\left(-6\right)=8>0\)
vậy pt luôn có 2 nghiệm pb
\(x_1=-\sqrt{2}-2\sqrt{2};x_2=-\sqrt{2}+2\sqrt{2}\)
b, \(\Delta=1-4\left(-3\right)\left(-2\right)=1-16< 0\)
pt vô nghiệm
c, \(\Delta=1-4.11\left(-1\right)=1+44=45>0\)
pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-3\sqrt{5}}{-2};x_2=\dfrac{-1+3\sqrt{5}}{-2}\)
a, ĐK: \(x\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\)
\(\Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\)
\(\Leftrightarrow x+\sqrt{x^2-x+11}=8\)
Ta thấy \(x+\sqrt{x^2-x+11}>11>\text{}8\)
\(\Rightarrow\) phương trình vô nghiệm.
\(a,\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(x\ge11\right)\\ \Leftrightarrow x+\sqrt{x-11}+x-\sqrt{x-11}+2\sqrt{\left(x+\sqrt{x-11}\right)\left(x-\sqrt{x-11}\right)}=16\\ \Leftrightarrow2x+2\sqrt{x^2-x+11}=16\\ \Leftrightarrow x+\sqrt{x^2-x+11}=8\\ \Leftrightarrow\sqrt{x^2-x+11}=8-x\\ \Leftrightarrow x^2-x+11=x^2-16x+64\\ \Leftrightarrow15x=53\\ \Leftrightarrow x=\dfrac{53}{15}\left(ktm\right)\)
\(b,\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\\ \Leftrightarrow\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\\ \Leftrightarrow\left|\sqrt{2x-5}-1\right|=1-\sqrt{2x-5}\\ \Leftrightarrow\sqrt{2x-5}-1\le0\\ \Leftrightarrow\sqrt{2x-5}\le1\\ \Leftrightarrow2x-5\le1\Leftrightarrow x\le\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{2}\)
a) x - sprt(x + 6) = 0
<=> -sprt(x + 6) = x2
<=> x + 6 = x2
<=> x + 6 - x2 = 0
<=> x2 - x - 6 = 0
<=> (x - 3)(x + 2) = 0
x - 3 = 0 hoặc x + 2 = 0
x = 0 + 3 x = 0 - 2
x = 3 x = -2
Vậy: nghiệm phương trình là: {3; -2}
b) (7 + sprt(x)).(8 - sprt(x)) = x + 11
<=> 56 - 7sprt(x) + 8sprt(x) - x = x + 11
<=> 56 + sprt(x) - x = x + 11
<=> sprt(x) = x + 11 - 56 + x
<=> sprt(x) = 2x - 45
<=> x = (2x - 45)2
<=> x = 4x2 - 180x - 2025
<=> x - 4x2 + 180x + 2025 = 0
<=> 181x - 4x2 - 2025 = 0
<=> 4x2 - 181x - 2025 = 0
<=> 4x2 - 81x - 100x + 2025 = 0
<=> x(4x - 81) - 25(4x - 81) = 0
<=> (4x - 81)(x - 25) = 0
4x - 81 = 0 hoặc x - 25 = 0
4x = 0 + 81 x = 0 + 25
4x = 81 x = 25
x = 81/4
Vậy nghiệm phương trình là: {81/4; 25}
Mình viết giống bạn hi vọng nó sẽ không khó hiểu :v
a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)
\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)
\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)
Vậy: S={1;-1;3}
a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)
b, \(x^2-2\sqrt{11}+11=0\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)
a) \(x^2-5=0\)
\(x^2=5\Leftrightarrow x=-\sqrt{5}\) hoặc \(x=\sqrt{5}\)
Vậy S={\(-\sqrt{5}\);\(\sqrt{5}\)}
b) \(x^2-2.\sqrt{11}x+11=0\)
\(x^2-2.x.\sqrt{11}+\left(\sqrt{11}\right)^2=0\)
\(\left(x-\sqrt{11}\right)^2=0\)
\(x-\sqrt{11}=0\)
\(x=\sqrt{11}\)
Vậy S={\(\sqrt{11}\)}
\(\)