K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

a )   x 2   –   5   =   0   ⇔   x 2   =   5   ⇔   x 1   =   √ 5 ;   x 2   =   - √ 5

Vậy phương trình có hai nghiệm  x 1   =   √ 5 ;   x 2   =   - √ 5

Cách khác:

x 2   –   5   =   0   ⇔   x 2   –   ( √ 5 ) 2   =   0

⇔ (x - √5)(x + √5) = 0

hoặc x - √5 = 0 ⇔ x = √5

hoặc x + √5 = 0 ⇔ x = -√5

b)

x 2   –   2 √ 11   x   +   11   =   0   ⇔   x 2   –   2 √ 11   x   +   ( √ 11 ) 2   =   0     ⇔   ( x   -   √ 11 ) 2   =   0

⇔ x - √11 = 0 ⇔ x = √11

Vậy phương trình có một nghiệm là x = √11

14 tháng 4 2021

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)

b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)

14 tháng 4 2021

x2 - 5 = 0

Δ = b2 - 4ac = 0 + 20 = 20

Δ > 0, áp dụng công thức nghiệm thu được x = ±√5

x2 - 2√11x + 11 = 0

Δ = b2 - 4ac = 44 - 44 = 0

Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

b, \(x^2-2\sqrt{11}+11=0\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

7 tháng 6 2017

a) \(x^2-5=0\)

\(x^2=5\Leftrightarrow x=-\sqrt{5}\) hoặc \(x=\sqrt{5}\)

Vậy S={\(-\sqrt{5}\);\(\sqrt{5}\)}

b) \(x^2-2.\sqrt{11}x+11=0\)

\(x^2-2.x.\sqrt{11}+\left(\sqrt{11}\right)^2=0\)

\(\left(x-\sqrt{11}\right)^2=0\)

\(x-\sqrt{11}=0\)

\(x=\sqrt{11}\)

Vậy S={\(\sqrt{11}\)}

\(\)

a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Vậy: S={1;-1;3}

28 tháng 3 2021

bạn có thể làm theo cách lớp 9 được ko???

 

2 tháng 4 2019

x2 – 2√11 x + 11 = 0

⇔ x2 – 2√11 x + (√11)2 = 0

⇔ (x - √11)2 = 0

⇔ x - √11 = 0 ⇔ x = √11

Vậy phương trình có một nghiệm là x = √11

24 tháng 6 2016

a) \(a^2-5=0\)<=>\(\left(a-\sqrt{5}\right)\left(a+\sqrt{5}\right)=0\)

<=> \(\left[\begin{array}{nghiempt}a-\sqrt{5}=0\\a+\sqrt{5}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}a=\sqrt{5}\\a=-\sqrt{5}\end{array}\right.\)

b)\(x^2-2\sqrt{11}x+11=\left(x-\sqrt{11}\right)^2=0\)

=>\(x+\sqrt{11}=0\)

=> x=\(\sqrt{11}\)

b; \(\text{Δ}=1^2-4\cdot\left(-2\right)\cdot\left(-3\right)=1-4\cdot6=-23< 0\)

Do đó: Phương trình vô nghiệm

c: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot11=1+44=45>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-3\sqrt{5}}{-2}=\dfrac{3\sqrt{5}-1}{2}\\x_2=\dfrac{-3\sqrt{5}-1}{2}\end{matrix}\right.\)

25 tháng 2 2022

a, \(\Delta'=2-\left(-6\right)=8>0\)

vậy pt luôn có 2 nghiệm pb 

\(x_1=-\sqrt{2}-2\sqrt{2};x_2=-\sqrt{2}+2\sqrt{2}\)

b, \(\Delta=1-4\left(-3\right)\left(-2\right)=1-16< 0\)

pt vô nghiệm 

c, \(\Delta=1-4.11\left(-1\right)=1+44=45>0\)

pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-3\sqrt{5}}{-2};x_2=\dfrac{-1+3\sqrt{5}}{-2}\)

10 tháng 5 2022

a, \(x=\dfrac{2}{\sqrt{7}-\sqrt{5}}=\dfrac{2\left(\sqrt{7}+\sqrt{5}\right)}{2}=\sqrt{7}+\sqrt{5}\)

b, Ta có a + b + c = 1 + 10 - 11 = 0 

Vậy pt có 2 nghiệm là x = 1 ; x = -11 

c, \(\Leftrightarrow\left(x^2-3\right)^2=0\Leftrightarrow x^2=3\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

21 tháng 6 2019

Theo em những bài toán khó lớp 9 hay lớp 10 mik mang lên H.VN nhé OLM ít ng trl lắm ạ