Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-8}{x^2-16}=\frac{1}{x+4}+\frac{1}{x-4}\)
\(\Rightarrow\frac{x^2-8}{\left(x+4\right)\left(x-4\right)}=\frac{x-4}{\left(x+4\right)\left(x-4\right)}+\frac{x+4}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow x^2-8=x-4+x+4\)
\(\Rightarrow x^2-8=2x\)
\(\Rightarrow x^2-2x-8=0\)
\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-8\right)=4+32=36>0\)
phương trình có 2 nghiệm phân biệt : \(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+\sqrt{36}}{2}=\frac{2+6}{2}=\frac{8}{2}=4\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-\sqrt{36}}{2}=\frac{2-6}{2}=\frac{-4}{2}=\left(-2\right)\)
\(DK:x\ge0\)
\(\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+1}}{x-x-1}+\frac{\sqrt{x+1}-\sqrt{x+2}}{x+1-x-2}+\frac{\sqrt{x+2}-\sqrt{x+3}}{x+2-x-3}=1\)
\(\Leftrightarrow-\sqrt{x}+\sqrt{x+1}-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=1+\sqrt{x}\)
\(\Leftrightarrow x+3=x+2\sqrt{x}+1\)
\(\Leftrightarrow x=1\)
Vay nghiem cua PT la \(x=1\)
\(\hept{\begin{cases}2.\frac{1}{x}+5.\frac{1}{x+y}=2\\3.\frac{1}{x}+\frac{1}{x+y}=1,7\end{cases}}\)
Đặt \(\frac{1}{x}\)=a
\(\frac{1}{x+y}=b\)
ta có \(\hept{\begin{cases}2a+5b=2\\3a+b=1,7\end{cases}}\)
\(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{5}\end{cases}}\)
=> \(\frac{1}{x}=\frac{1}{2}\Rightarrow x=2\)
\(\frac{1}{x+y}=\frac{1}{5}\)\(\Rightarrow x+y=5\)\(\Rightarrow y=3\)
\(DKXD:x>0\)
\(PT\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)
\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x-4+7}{2\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{x^2-4x+3}{2\left(x+1\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)
\(\Rightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x\sqrt{x+\frac{3}{x}}=2\text{ }\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\text{ }x^3+3x-4=0\)
\(\Leftrightarrow x=1\text{ }or\text{ }x=3\text{ }or\left(\text{ }x-1\right)\left(x^2+x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy PT có 2 nghiệm \(x=1;x=3\)
\(\frac{12}{x-1}-\frac{8}{x+1}=1\left(ĐKXĐ:x\ne\pm1\right)\)
\(\Leftrightarrow\frac{12\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{8\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\) \(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(12x+12\right)-\left(8x-8\right)=x^2-1\)
\(\Leftrightarrow12x+12-8x+8=x^2-1\)
\(\Leftrightarrow12x+12-8x+8-x^2+1=0\)
\(\Leftrightarrow-x^2+4x+21=0\)
\(\Leftrightarrow x^2-4x-21=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)-25=0\)
\(\Leftrightarrow\left(x-2\right)^2-5^2=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{7;-3\right\}\)
a thiếu
chỗ x phải có chữ thỏa mãn nữa nha
sorry sora cưng