K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điều kiện: \(x\ge-1\)

PT \(\Rightarrow-2x-2\le x^2-2x-3\le2x+2\)

+) Xét \(x^2-2x-3\ge-2x-2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

+) Xét \(x^2-2x-3\le2x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge5\end{matrix}\right.\)

 \(\Rightarrow x\in(-\infty;-1]\cup[-5;+\infty)\)

12 tháng 1 2021

2. \(|x| +|x-1| ≤ 5 \\ \Leftrightarrow |x| + |x-1| ≤ \dfrac{5}{2}\)

 \(-∞\)\(0\)\(1\)           \(+∞\)
\(|x|\)               \(-x\)        \(x\)            \(x\)\(x\)
\(|x-1|\)             \(1-x\)      \(1-x\)         \(x-1\)\(x-1\)
\(|x|+|x-1|\)           \(1-2x\)         \(1\)       \(2x-1\)\(2x-1\)

TH1: \(1-2x ≤ \dfrac{5}{2} \Leftrightarrow x ≥ \dfrac{-3}{4}\)

TH2: \(2x-1 ≤ \dfrac{5}{2} \Leftrightarrow x ≤ \dfrac{7}{4}\) 

Vậy....

5 tháng 2 2022

\(\left|4-3x\right|\le8\)

\(\Leftrightarrow-8\le4-3x\le8\)

\(\Leftrightarrow-\dfrac{4}{3}\le x\le4\)

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)

25 tháng 1 2017

\(\left|2x+1\right|=5\)

\(\Rightarrow2x+1=\pm5\)

+) \(2x+1=5\Rightarrow2x=4\Rightarrow x=2\)

+) \(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-3\)

Vậy \(x\in\left\{2;-3\right\}\)

25 tháng 1 2017

\(\left|2x+1\right|=5\)

\(\Rightarrow\left[\begin{matrix}2x+1=5\\2x+1=-5\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}2x=5-1\\2x=-5-1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}2x=4\\2x=-6\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=4:2\\x=-6:2\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy : \(\left[\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left|2x+4\right|-\left|1-x\right|=-3\)