Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình có vô số nghiệm thì \(m-3=0\)
hay m=3
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
giống Nguyễn Lê Phước Thịnh nhé
a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)
hay \(m\notin\left\{3;-2\right\}\)
Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)
Để phương trình có vô số nghiệm thì m=3
\(\dfrac{2x-1}{x+1}-2< 0.\left(x\ne-1\right).\\ \Leftrightarrow\dfrac{2x-1-2x-2}{x+1}< 0.\Leftrightarrow\dfrac{-3}{x+1}< 0.\)
Mà \(-3< 0.\)
\(\Rightarrow x+1>0.\Leftrightarrow x>-1\left(TMĐK\right).\)
\(\dfrac{x^2-2x+5}{x-2}-x+1\ge0.\left(x\ne2\right).\\ \Leftrightarrow\dfrac{x^2-2x+5-x^2+2x+x-2}{x-2}\ge0.\\ \Leftrightarrow\dfrac{x+3}{x-2}\ge0.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0.\\x-2\ge0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0.\\x-2\le0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3.\\x\ge2.\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3.\\x\le2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2.\\x\le-3.\end{matrix}\right.\)
Kết hợp ĐKXĐ.
\(\Rightarrow\left[{}\begin{matrix}x>2.\\x\le-3.\end{matrix}\right.\)
\(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}\le0.\left(x\ne1;x\ne\dfrac{-3}{2}\right).\)
Đặt \(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}=f\left(x\right).\)
Ta có bảng sau:
\(x\) | \(-\infty\) \(-\dfrac{3}{2}\) \(-\dfrac{1}{2}\) \(1\) \(2\) \(+\infty\) |
\(1+2x\) | - | - 0 + | + | + |
\(x-2\) | - | - | - | - 0 + |
\(2x+3\) | - 0 + | + | + | + |
\(1-x\) | + | + | + 0 - | - |
\(f\left(x\right)\) | - || + 0 - || + 0 - |
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left(\dfrac{-3}{2};\dfrac{-1}{2}\right)\cup\)(1;2].
TH1: \(x\le-2\)
\(pt\Leftrightarrow-x-1-x-2-2x+1=3\)
\(\Leftrightarrow0x=5\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le-1\)
\(pt\Leftrightarrow-x-1+x+2-2x+1=3\)
\(\Leftrightarrow x=-\dfrac{1}{2}\left(l\right)\)
TH3: \(-1< x\le\dfrac{1}{2}\)
\(pt\Leftrightarrow x+1+x+2-2x+1=3\)
\(\Leftrightarrow0x=-1\)
\(\Rightarrow\) vô nghiệm
TH4: \(x>\dfrac{1}{2}\)
\(pt\Leftrightarrow x+1+x+2+2x-1=3\)
\(\Leftrightarrow x=\dfrac{1}{4}\left(l\right)\)
Vậy phương trình đã cho vô nghiệm