K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: gócDAB+gócBAC=gócDAC
               gócEAC+gócBAC=gócBAE
       MÀ gócDAB=gócEAC(=90độ)
=> gócDAC=gócBAE
xét tam giác DAC và tam giác BAE có:
AD=AB(GT)
AE=AC(GT)
gócDAC=gócBAE(cmt)
=>tam giác DAC =tam giác BAE(c.g.c) 
gọi giao điểm của AB và CD là F
      giao điểm của BE VÀ CD là I
Xét tam giác afd vuông tại A
=>gócADF+gócDFA=90độ
   mà gócADF= gócABI ( tam giác DAC =tam giác BAE  )
gócDFA=gócBFI
=> gócABI+gócBFI=90độ
=>gócFIB=90độ
=>CD vuông góc BE

b)từ a 
có KH,BE,CD là 3 đường cao của tam giácKBC nên chúng đồng quy tại I

a) Kẻ DM, EN vuông góc BC.

Xét :

_ AC = CE

 (góc có cạnh tương ứng vuông góc)

Nên chúng bằng nhau, suy ra: 

Tương tự: 

Do  (P là giao của CK và BE, quên vẽ) nên CNEP là tứ giác ntiếp 

Do đó 2 tam giác vuông 

Từ đó: 

2 tg này có 2 cặp cạnh tg ứng vuông góc là MD, BH và MC, KH nên cặp còn lại 

b) Từ a ta có KH, BE, CD là 3 đường cao , nên chúng đòng quy tại I.

5 tháng 5 2023

hộ e cái mọi người ơi

 

28 tháng 7 2023

mik lm nếu bn like =)

28 tháng 7 2023

Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.

b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.

Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.

b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.

24 tháng 8 2021

Cách số 1 
undefined

24 tháng 8 2021

Cách số 2
undefined