Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Diện tích là:
\(15\cdot6=90\left(m^2\right)\)
Bài 3:
Gọi cd,cr lần lượt là a,b(m;a,b>0)
Áp dụng tc dtsbn:
\(\dfrac{b}{a}=\dfrac{2}{5}\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a+2b}{10+4}=\dfrac{42}{14}=3\\ \Rightarrow\left\{{}\begin{matrix}a=15\\b=6\end{matrix}\right.\\ \Rightarrow S_{hcn}=ab=90\left(m^2\right)\)
Bài 4:
Gọi cd,cr lân lượt là a,b(m;a,b>0)
Đặt \(\dfrac{a}{4}=\dfrac{b}{3}=k\Rightarrow a=4k;b=3k\)
\(ab=300\left(m^2\right)\\ \Rightarrow12k^2=300\\ \Rightarrow k^2=25\Rightarrow k=5\left(k>0\right)\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)
Vậy ...
Bài 5:
Gọi số hs 7A,7B,7C,7D ll là a,b,c,d(hs;a,b,c,d∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{11}=\dfrac{b}{12}=\dfrac{c}{13}=\dfrac{d}{14}=\dfrac{2b-a}{24-11}=\dfrac{39}{13}=3\\ \Rightarrow\left\{{}\begin{matrix}a=33\\b=36\\c=39\\d=42\end{matrix}\right.\)
Vậy ...
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
Ta có : a song song với b
=> Góc A = Góc B = 90độ
Hay x = 90 độ
=> Góc D + Góc C = 180độ ( 2 góc trong cùng phía )
=> y + 130 độ = 180 độ
=> y = 50 độ
Vẽ Cx song song với Am(1), ta được :
=> Góc mAC + Góc ACx = 180 độ
=> Góc mAC + Góc BCA + Góc BCx = 180 độ
Hay Góc BCx = 180 độ - 45 độ - 60 độ = 75 độ
Vì Góc nBC + Góc BCx = 180 độ ( 75 độ + 105 độ = 180 độ )
Mà Góc nBC và Góc BCx là 2 góc trong cùng phía
Nên ta được Bn song song với Cx (2)
Từ (1) và (2) => Bn song song với Am
27: \(\sqrt{\dfrac{81}{25}}-\dfrac{1}{5}\left(-3+\sqrt{16}\right)^{20}\cdot\left(-2\right)^3\)
\(=\dfrac{9}{5}-\dfrac{1}{5}\cdot\left(-8\right)\)
\(=\dfrac{9}{5}+\dfrac{8}{5}=\dfrac{17}{5}\)
28: \(\sqrt{\sqrt{16}}-\sqrt{\sqrt{81}}=2-3=-1\)
\(\text{8.C.So le trong}\)
\(\text{9.C.a trùng b}\)
\(\text{10.B.}60^0\)
\(\text{11.C.}150^0\)
\(\text{12.B.A=P}\)
\(2^x:1+2^x:2+...+2^x:49=2^{49}-1\)
\(2^x.1+2^x.\frac{1}{2}+...+2^x.\frac{1}{49}=2^{49}-1\)
\(2^x.\left(1+\frac{1}{2}+...+\frac{1}{49}\right)=2^{49}-1\)
Đặt: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{49}}\right)\)
=> \(A=1-\frac{1}{2^{49}}=\frac{2^{49}-1}{2^{49}}\)
\(2^{x-1}+2^{x-2}+2^{x-3}+...+2^{x-49}=2^{49}-1\)
<=> \(\frac{2^x}{2}+\frac{2^x}{2^2}+\frac{2^x}{2^3}+...+\frac{2^x}{2^{49}}=2^{49}-1\)
<=> \(2^x\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\right)=2^{49}-1\)
<=> \(2^x.\frac{2^{49}-1}{2^{49}}=2^{49}-1\)
<=> \(2^x=2^{49}\)
<=> x = 49.
Câu 3:
1: \(\sqrt{\dfrac{1}{4}}=\dfrac{\sqrt{1}}{\sqrt{4}}=\dfrac{1}{2}\)
2: \(\sqrt{\dfrac{25}{49}}=\dfrac{\sqrt{25}}{\sqrt{49}}=\dfrac{5}{7}\)
3: \(\sqrt{\dfrac{64}{81}}=\dfrac{\sqrt{64}}{\sqrt{81}}=\dfrac{8}{9}\)
4: \(\sqrt{\dfrac{100}{9}}=\dfrac{\sqrt{100}}{\sqrt{9}}=\dfrac{10}{3}\)
5: \(\sqrt{\dfrac{17+8}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{\sqrt{25}}{\sqrt{16}}=\dfrac{5}{4}\)
6: \(\sqrt{\dfrac{36}{100-36}}=\sqrt{\dfrac{36}{64}}=\sqrt{\dfrac{9}{16}}=\dfrac{\sqrt{9}}{\sqrt{16}}=\dfrac{3}{4}\)
7: \(\sqrt{1-\dfrac{11}{36}}=\sqrt{\dfrac{36}{36}-\dfrac{11}{36}}=\sqrt{\dfrac{25}{36}}=\dfrac{\sqrt{25}}{\sqrt{36}}=\dfrac{5}{6}\)
8: \(\sqrt{2+\dfrac{1}{4}}=\sqrt{\dfrac{9}{4}}=\dfrac{\sqrt{9}}{\sqrt{4}}=\dfrac{3}{2}\)
Câu 5:
1: ĐKXĐ: x>=0
\(\sqrt{x}+\dfrac{1}{3}=\dfrac{1}{4}\)
=>\(\sqrt{x}=\dfrac{1}{4}-\dfrac{1}{3}=-\dfrac{1}{12}\)<0(vô lý)
=>Phương trình vô nghiệm
2: ĐKXĐ: x>=0
\(2-3\sqrt{x}=-7\)
=>\(3\sqrt{x}=2+7=9\)
=>\(\sqrt{x}=3\)
=>\(x=3^2=9\)(nhận)
3: ĐKXĐ: x+1>=0
=>x>=-1
\(\sqrt{x+1}=1\)
=>\(x+1=1^2=1\)
=>x=1-1=0(nhận)
4: ĐKXĐ: x>=0
\(\dfrac{3}{5}\sqrt{x}-\dfrac{2}{3}=\dfrac{4}{5}\)
=>\(\dfrac{3}{5}\sqrt{x}=\dfrac{2}{3}+\dfrac{4}{5}=\dfrac{10}{15}+\dfrac{12}{15}=\dfrac{22}{15}\)
=>\(\sqrt{x}=\dfrac{22}{15}:\dfrac{3}{5}=\dfrac{22}{15}\cdot\dfrac{5}{3}=\dfrac{110}{45}=\dfrac{22}{9}\)
=>\(x=\left(\dfrac{22}{9}\right)^2=\dfrac{264}{81}\)
5: ĐKXĐ: 2x-7>=0
=>x>=7/2
\(\sqrt{2x-7}=5\)
=>\(2x-7=5^2=25\)
=>2x=7+25=32
=>x=32/2=16(nhận)
6: ĐKXĐ: 2-3x>=0
=>3x<=2
=>\(x< =\dfrac{2}{3}\)
\(\sqrt{2-3x}=4\)
=>\(2-3x=4^2=16\)
=>3x=2-16=-14
=>\(x=-\dfrac{14}{3}\left(nhận\right)\)