Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+2=t\ne0\Rightarrow x+1=t-1\)
\(A=\dfrac{x+1}{\left(x+2\right)^2}=\dfrac{t-1}{t^2}=-\dfrac{1}{t^2}+\dfrac{1}{t}=-\left(\dfrac{1}{t}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(A_{max}=\dfrac{1}{4}\) khi \(t=2\) hay \(x=0\)
=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
A = -x² - 6x + 1
= -(x² + 6x - 1)
= -(x² + 6x + 9 - 10)
= -[(x + 3)² - 10]
= -(x + 3)² + 10
Do (x + 3)² ≥ 0 với mọi x ∈ R
⇒ -(x + 3)² ≤ 0 với mọi x ∈ R
⇒ -(x + 3)² + 10 ≤ 10 với mọi x ∈ R
Vậy GTLN của A là 10 khi x = -3
\(A=-x^2-6x+1\)
\(A=-\left(x^2+6x-1\right)\)
\(A=-\left(x^2+6x+9-10\right)\)
\(A=-\left(x^2+2\cdot x\cdot3+3^2\right)+10\)
\(A=-\left(x+3\right)^2+10\)
Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow-\left(x+3\right)^2\le0\)
\(\Rightarrow-\left(x+3\right)^2+10\le10\)
\(\Rightarrow A\le10\)
Dấu "=" xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy: \(A_{min}=10\Leftrightarrow x=-3\)
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
\(x^2\left(2-x^2\right)\)
\(=x^2.2-\left(x^2\right)^2\)
\(=2x^2-\left(x^2\right)^2\)
\(=-x^4+2x^2\)
=> BT ko có GTLN/GTNN
a) \(A=4x-x^2+3\)
\(\Leftrightarrow A=-\left(x^2-4x+4\right)+7\)
\(\Leftrightarrow A=-\left(x-2\right)^2+7\le7,\forall x\in R\)
\(\Rightarrow GTLN\left(A\right)=7\left(tại.x=2\right)\)
b) \(B=-3x^2+5x+2\)
\(\Leftrightarrow B=-3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+\dfrac{25}{12}+2\)
\(\Leftrightarrow B=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12},\forall x\in R\)
\(\Rightarrow GTLN\left(B\right)=\dfrac{49}{12}\left(tại.x=\dfrac{5}{6}\right)\)
\(a,A=4x-x^2+3\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+7\le7\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_A=7\) khi \(x=2\)
\(b,B=-3x^2+5x+2\)
\(=-3x^2+5x-\dfrac{25}{12}+\dfrac{25}{12}+2\)
\(=-3\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+\dfrac{49}{12}\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Ta có: \(\left(x-\dfrac{5}{6}\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)
Vậy \(Max_B=\dfrac{49}{12}\) khi \(x=\dfrac{5}{6}\)
#Toru