K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)

\(=\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)

\(\Rightarrow5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)\left(x-2\right)=16\left(x-2\right)\left(x-4\right)\)

\(\Leftrightarrow5x^2-35x+60+5x^2-20x+20=16x^2-96x+128\)

\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)

\(\Leftrightarrow-6x^2+41x-48=0\)

......

22 tháng 7 2017

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)

\(\Leftrightarrow\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)

\(\Leftrightarrow\frac{5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)^2}{5\left(x-2\right)\left(x-4\right)}=\frac{16.\left(x-2\right)\left(x-4\right)}{5\left(x-2\right)\left(x-4\right)}\)

\(\Rightarrow5x^2-20x-15x+60+5x^2-20x+20=16x^2-64x-32x+128\)

\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)

\(\Leftrightarrow6x^2-41x+48=0\)

\(\Leftrightarrow x=\frac{16}{3};x=\frac{3}{2}\)

5 tháng 5 2019

Em nghĩ là như vầy ạ:

\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)

Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)

Vậy min B = 4/5 khi x = 3/2 (TMĐK)

5 tháng 5 2019

1/(x + 1) + 1/(4 - x) ≥ (1 + 1)^2/(x + 1 + 4 - x) = 4/5

28 tháng 11 2016

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)

\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)

14 tháng 2 2017

Theo bài ra ,ta có : 

\(\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\left(ĐKXĐ:x\ne0;x\ne2;x\ne-2\right)\)

Quy đồng và khử mẫu ta được 

\(x\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x\left(x^2+2\right)\)

\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+2\right)=2x^3+4x\)

\(\Leftrightarrow x^3+2x+2x^2+4=2x^3+4x\)

\(\Leftrightarrow x^3-2x^3+2x^2+2x-4x+4=0\)

\(\Leftrightarrow-x^3+2x^2-2x+4=0\)

\(\Leftrightarrow-\left(x^3-2x^2+2x-4\right)=0\)

\(\Leftrightarrow-\left(x^2\left(x-2\right)+2\left(x-2\right)\right)=0\)

\(\Leftrightarrow-\left(\left(x-2\right)\left(x^2+2\right)\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow2-x=0\)( Vì x2 + 2 luôn luôn > 2 với mọi x ) 

\(\Leftrightarrow x=2\)(Không TMĐKXĐ) ( Loại )

Vậy S={rỗng}

Chúc bạn học tốt =))

c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)

d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)

26 tháng 12 2020

a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2

b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

Phần c nản quá.

25 tháng 12 2020

a) 2x(x + y) - y(y + 2x) 

= 2x2 + 2xy - y2 - 2xy

= 2x2 - y2

b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)

c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)

\(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)

\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)

11 tháng 1 2017

\(\frac{-2}{\left(x+5\right)\left(x-5\right)}\)

19 tháng 2 2021

Ta có : \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)

\(\Leftrightarrow12x^2-8x+9x-6=2x-3x^2-2+3x\)

\(\Leftrightarrow12x^2-8x+9x-6-2x+3x^2+2-3x=0\)

\(\Leftrightarrow15x^2-4x-4=0\)

\(\Leftrightarrow15x^2-10x+6x-4=0\)

19 tháng 2 2021

Lỗi :vvvv

\(\Leftrightarrow10x\left(\dfrac{3}{2}x-1\right)+4\left(\dfrac{3}{2}x-1\right)=0\)

\(\Leftrightarrow\left(10x+4\right)\left(\dfrac{3}{2}x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ...