Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow\frac{\left(x+2\right)x}{\left(x-2\right)x}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow\frac{x^2+2x-x+2}{\left(x-2\right)x}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+x+2=2\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{0;-1\right\}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x\left(x+2\right)-1\left(x-2\right)=2\)
\(\Leftrightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Bạn chú ý cách viết phương trình.
Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.
\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)
\(=16\)
Phương trình đã cho trở thành
\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)
Ta có: \(\frac{x+2}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
ĐKXĐ: \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\left(x+2\right)^2+\left(x-1\right)\left(x-2\right)=2\left(x^2+2\right)\)
\(\Leftrightarrow x^2+4x+4+x^2-2x-x+2=2x^2+4\)
\(\Leftrightarrow x^2+4x+4+x^2-2x-x+2-2x^2-4=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\left(ktmđk\right)\)
Vậy: \(x=\varnothing\)
quy đồng ,bỏ mẫu ,rút gọn =X2 +X=0
X=0 và X=-1
11111111111111111111111111111111111111111111111111111111111111111111111111111111
<=> \(\frac{\left(x+2\right)\cdot\left(x+2\right)}{x\cdot\left(x+2\right)}\)-\(\frac{x^2+5x+4}{x\left(x+2\right)}\)=\(\frac{x\left(x+2\right)}{\left(x+2\right)\cdot\left(x+2\right)}\)
=> x^2+4x+4-x^2-5x-4=x^2+2x
=> -x=x^2+2x
=> x^2+3x=0
=>x*(x+3)=0
\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)
Mà
\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)
\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)
\(=\frac{1}{x}-\frac{1}{x+9}\)
\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)
a,<=>\(\frac{20\left(1-2x\right)+6x}{12}\)=\(\frac{9\left(x-5\right)-24}{12}\)
=> 20-40x+6x = 9x-45-24
<=> -40x+6x-9x = -20-45-24
<=> -43x = -89
<=> x = \(\frac{89}{43}\)
c,ĐKXĐ :x\(\ne\pm1\)
<=>\(\frac{3\left(x+1\right)}{x^2+1}\) = -\(\frac{3x+2}{x^2+1}\) - \(\frac{4\left(x-1\right)}{x^2+1}\)
=> 3x+1 = -3x-2-4x+4
<=>3x+3x+4x = -1-2+4
<=> 10x = 1
<=> x =\(\frac{1}{10}\)(TMĐK)
Theo bài ra ,ta có :
\(\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\left(ĐKXĐ:x\ne0;x\ne2;x\ne-2\right)\)
Quy đồng và khử mẫu ta được
\(x\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x\left(x^2+2\right)\)
\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x^3+4x\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-x+2\right)=2x^3+4x\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+2\right)=2x^3+4x\)
\(\Leftrightarrow x^3+2x+2x^2+4=2x^3+4x\)
\(\Leftrightarrow x^3-2x^3+2x^2+2x-4x+4=0\)
\(\Leftrightarrow-x^3+2x^2-2x+4=0\)
\(\Leftrightarrow-\left(x^3-2x^2+2x-4\right)=0\)
\(\Leftrightarrow-\left(x^2\left(x-2\right)+2\left(x-2\right)\right)=0\)
\(\Leftrightarrow-\left(\left(x-2\right)\left(x^2+2\right)\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow2-x=0\)( Vì x2 + 2 luôn luôn > 2 với mọi x )
\(\Leftrightarrow x=2\)(Không TMĐKXĐ) ( Loại )
Vậy S={rỗng}
Chúc bạn học tốt =))