K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow x\left(x+2\right)-1\left(x-2\right)=2\)

\(\Leftrightarrow x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

3 tháng 4 2017

Bạn chú ý cách viết phương trình.

Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.

\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)

\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)

\(=16\)

Phương trình đã cho trở thành

\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

5 tháng 4 2020
https://i.imgur.com/SOXfFlR.jpg
5 tháng 4 2020
https://i.imgur.com/OF5t7D1.jpg
20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

11 tháng 2 2017

Cái này là phương trình chứa ẩn ở mẫu đó nha, mình cần sớm

2 tháng 7 2020

\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)

\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)

\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)

\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)

\(< =>3072-107x=\frac{38x-684}{5}\)

\(< =>\left(3072-107x\right)5=38x-684\)

\(< =>15360-535x-38x-684=0\)

\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)

nghệm xấu thế 

2 tháng 7 2020

\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)

\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)

\(< =>993-33x-11x-415=0\)

\(< =>578=44x< =>x=\frac{289}{22}\)

2 tháng 4 2017

\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)

\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)

\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)

\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)

\(\Leftrightarrow-x\le11\)

\(\Leftrightarrow x\le-11\)

2 tháng 4 2017

biết đừng đăng anh à

14 tháng 2 2017

Theo bài ra ,ta có : 

\(\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{x}=\frac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\left(ĐKXĐ:x\ne0;x\ne2;x\ne-2\right)\)

Quy đồng và khử mẫu ta được 

\(x\left(x+1\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x\left(x^2+2\right)\)

\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)-\left(x-2\right)\left(x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-x+2\right)=2x^3+4x\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+2\right)=2x^3+4x\)

\(\Leftrightarrow x^3+2x+2x^2+4=2x^3+4x\)

\(\Leftrightarrow x^3-2x^3+2x^2+2x-4x+4=0\)

\(\Leftrightarrow-x^3+2x^2-2x+4=0\)

\(\Leftrightarrow-\left(x^3-2x^2+2x-4\right)=0\)

\(\Leftrightarrow-\left(x^2\left(x-2\right)+2\left(x-2\right)\right)=0\)

\(\Leftrightarrow-\left(\left(x-2\right)\left(x^2+2\right)\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow2-x=0\)( Vì x2 + 2 luôn luôn > 2 với mọi x ) 

\(\Leftrightarrow x=2\)(Không TMĐKXĐ) ( Loại )

Vậy S={rỗng}

Chúc bạn học tốt =))