K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Trước hết, ta có số hoán vị của nn phần tử là :
Pn=n!Pn=n!
Trong đó kể cả số hoán vị mà 2 phần tử aa và bb đứng cạnh nhau .
Ta đi xem có bao nhiêu cách chọn cặp (a,b)(a,b) đứng cạnh nhau và dễ thấy rằng :
* Với bb đứng bên phải aa, khi đó ta có thể chọn cho aa tất cả (n−1)(n−1) vị trí từ vị trí đầu tiên đến vị trí thứ (n−1)(n−1).
* Với aa đứng bên phai4 bb, cũng có (n−1)(n−1) cách chọn.
Do đó có 2(n−1)2(n−1) cách chọn cặp (a,b)(a,b) đứng canh nhau. ứng với mỗi trường hợp chọn cặp (a,b)(a,b), ta có (n−2)!(n−2)! cách sắp xếp (n−2)(n−2) vật còn lại vào (n−2)(n−2) vị trí còn lại. Do đó , có tất cả :
2(n−1)(n−2)!=2(n−1)!2(n−1)(n−2)!=2(n−1)!
hoán vị nn vật mà trong đó có 2 phần tử aa và bb đứng cạnh nhau.
Suy ra , số hoán vị của nn phần tử trong đó có 2 phần tử aa và bb không đứng cạnh nhau là :
n!−2(n−1)!=(n−2)(n−1)!.

2 tháng 5 2016

Sao khó quá

18 tháng 9 2020

Ta có: \(\frac{2000}{-2001}=-\frac{2000}{2001}=-\left(\frac{2001-1}{2001}\right)=-\left(\frac{2001}{2001}-\frac{1}{2001}\right)=-\left(1-\frac{1}{2001}\right)=-1+\frac{1}{2001}\)

       \(-\frac{2003}{2002}=-\left(\frac{2002+1}{2002}\right)=-\left(\frac{2002}{2002}+\frac{1}{2002}\right)=-\left(1+\frac{1}{2002}\right)=-1-\frac{1}{2002}\)

Vì \(\frac{1}{2001}>-\frac{1}{2002}\) nên \(-1+\frac{1}{2001}>-1-\frac{1}{2002}\)

hay \(\frac{2000}{-2001}>-\frac{2003}{2002}\)

18 tháng 9 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì a = bk ; c = dk

Ta có : \(\frac{ab}{cd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right).k^2}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

27 tháng 3 2020

Lấy điểm H sao H là trung điểm của AC => AH = HC = AC : 2   hay 2AH = 2HC = AC

Trên tia đối của HD lấy điểm K sao cho HK = HD = DK : 2 hay 2HK = 2HD = DK 

Xét △AHK và △CHD 

Có: AH = HC (cách vẽ)

  ∠AHK = ∠CHD (2 góc đối đỉnh)

       HK = HD (cách vẽ)

=> △AHK = △CHD (c.g.c)

=> AK = CD (2 cạnh tương ứng) mà CD = BD (gt)  => AK = BD

và ∠HAK = ∠HCD (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le tron

=> AK // CD (dhnb)   => AK // BC (D \in  BC)  => ∠KAD = ∠ADB (2 góc so le trong)

 Ta có: BC = 2AB (gt)  => BC : 2 = AB => BD = DC = AB  => BD : 2 = AB : 2  => BE = AB : 2   

Xét △ABD và △DKA

Có: AD là cạnh chung

      ∠ADB = ∠DAK (cmt)

           BD = AK (cmt)

=> △ABD = △DKA (c.g.c)

=> ∠BAD = ∠ADK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong  => AB // DK  => ∠ABD = ∠KDC (2 góc đồng vị)

và AB = DK (2 cạnh tương ứng)

=> AB : 2 = DK : 2

=> AB : 2 = HD  

Mà BE = AB : 2   

=> HD = BE

Xét △ABE và △CDH

Có: BE = HD (cmt)

  ∠ABE = ∠CDH (cmt)

       AB = CD (cmt)

=> △ABE = △CDH (c.g.c)

=> AE = CH (2 cạnh tương ứng)

=> 2AE = 2CH  mà 2CH = AC (cách vẽ)

=> 2AE = AC (đpcm)

3 tháng 8 2021

Với n = 0 thì \(\sqrt{1^3+2^3+3^3+..+n^3}=1+2+3+...+n\)(1) 

Với n = 1 thì (1) đúng

Giả sử với n = k thì (1) đúng 

Ta chứng minh với n = k + 1 thì (1) đúng 

Tức là chứng minh khi \(\sqrt{1^3+2^3+3^3+...+k^3}=1+2+3+...+k\)

thì \(\sqrt{1^3+2^3+...+\left(k+1\right)^3}=1+2+3+...+k+1\)(2) 

Từ (2) \(\Rightarrow1^3+2^3+3^3+...+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2\)

Khi đó (1 + 2 + 3 + ... + k + 1)2 = [(k + 1)(k + 2) : 2]2 = \(\frac{\left[\left(k+1\right)\left(k+2\right)\right]^2}{4}\)(3)

Lại có \(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3\)

\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]\)

\(=\frac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\frac{\left[\left(k+1\right)\left(k+2\right)\right]^2}{4}\)(4)

Từ (3) (4)  \(\Rightarrow1^3+2^3+3^3+...+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2\)

\(\Rightarrow\left(2\right)\text{đúng}\Rightarrow\text{đpcm}\)

NM
3 tháng 8 2021

đầu tiên ta có :

\(1+2+3+..+n=\frac{n\left(n+1\right)}{2}\) ( cái này thì dễ rồi ha)

ta sẽ chứng minh : \(1^3+2^3+..+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\) bằng quy nạp

đẳng thức đúng với n =1 

giả sử đẳng thức đúng với n=k , tức là :

\(1^3+2^3+..+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)

ta sẽ chứng minh đúng với n=k+1, thật vậy

ta có : \(1^3+2^3+..+k^3+\left(k+1\right)^3=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)

Vậy đẳng thức đúng với k+1, theo nguyên lý quy nạp ta có điều phải chứng minh

11 tháng 2 2016

-5555 + -5942 =-11497

Đây là toán lớp 6 chứ ko phải lớp 7 nha bạn !!!!!

11 tháng 2 2016

thank you bạn nha

16 tháng 9 2018

mình thi toán volympic lớp 4 , mình hok lớp 4 

k nha 

20 tháng 3 2020

Mình cũng thế nè

22 tháng 3 2016

Mình đã giải xong, không cần nữa nha! Thanks!