Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xết tam giác ABC có:
AD=DB(trung điểm)(1)
AE=EC(trung điểm)(2)
Từ (1)(2) =>DE là đường trung bình
=>DE//BC
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
A ) áp dụng định lý py ta có :
\(AB^2 + AC^2 = 8^2 + 6^2 = 100 = 10^2 = BC^2\)
\(\Rightarrow\)\(AB^2 + AC^2 = BC^2\)
\(\Rightarrow\)tam giác \(ABC\) vuông tại \(A\)
B) xét tam giác \(BAH\) vuông tại \(H\) có : góc \(BAH\) + góc \(ABH = 90\)¤
Xét tam giác \(ABC \) vuông tại \(A\) có : góc \(ABH + \) góc \(ACB = 90^o\)
\(\Rightarrow\)góc\(BAH = \) góc \(ACB \)
C ) xét tam giác \(BAC = \) tm giác \(DAC ( c - g - c )\)
\(\Rightarrow\)\(BC = CD\)
Góc \(BCE = \) góc \(DCE\)
Xét tam giác \(BEC \) và tam giác \(DEC \)có :
\(BC = CD\)
góc \(BCE\) = góc \(DCE\)
CẬU TỰ VẼ HINH NHÉ!
a) ap dụng định lý py ta go ta có:
AB^2+AC^2 =8^2+6^2 =100 =10^2=BC^2
Suy ra AB^2+AC^2=BC^2
Suy ra∆ABC vuông tai A
b) Xet ∆BAH vuông tại H có: góc BAH+ góc ABH= 90°
Xét∆ABC vuông tại A có: góc ABH + gócACB =90°
Suy ra: goc BAH=góc ACB
c)xet ∆BAC=∆DAC (c-g-c)
Suy ra: BC=CD
Góc BCE = góc DCE
Xét∆BEC và∆DEC có:
BC= CD
Góc BCE = góc DCE
Chung cạnh EC
Suy ra∆BEC=∆DEC( c-g-c )
D) gọi trung điểm của BC rồi tu CM nó vs D và E thẳng hàng nhé. Muộn rồi, mk phai đi ngủ!
Lấy điểm H sao H là trung điểm của AC => AH = HC = AC : 2 hay 2AH = 2HC = AC
Trên tia đối của HD lấy điểm K sao cho HK = HD = DK : 2 hay 2HK = 2HD = DK
Xét △AHK và △CHD
Có: AH = HC (cách vẽ)
∠AHK = ∠CHD (2 góc đối đỉnh)
HK = HD (cách vẽ)
=> △AHK = △CHD (c.g.c)
=> AK = CD (2 cạnh tương ứng) mà CD = BD (gt) => AK = BD
và ∠HAK = ∠HCD (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le tron
=> AK // CD (dhnb) => AK // BC (D BC) => ∠KAD = ∠ADB (2 góc so le trong)
Ta có: BC = 2AB (gt) => BC : 2 = AB => BD = DC = AB => BD : 2 = AB : 2 => BE = AB : 2
Xét △ABD và △DKA
Có: AD là cạnh chung
∠ADB = ∠DAK (cmt)
BD = AK (cmt)
=> △ABD = △DKA (c.g.c)
=> ∠BAD = ∠ADK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong => AB // DK => ∠ABD = ∠KDC (2 góc đồng vị)
và AB = DK (2 cạnh tương ứng)
=> AB : 2 = DK : 2
=> AB : 2 = HD
Mà BE = AB : 2
=> HD = BE
Xét △ABE và △CDH
Có: BE = HD (cmt)
∠ABE = ∠CDH (cmt)
AB = CD (cmt)
=> △ABE = △CDH (c.g.c)
=> AE = CH (2 cạnh tương ứng)
=> 2AE = 2CH mà 2CH = AC (cách vẽ)
=> 2AE = AC (đpcm)