K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

SIêu nhân henshin! kkk

9 tháng 2 2020

\(102=x^2+y^2+52\)

\(=\left(x^2+16\right)+\left(y^2+36\right)\)

\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)

\(\Rightarrow A\le26\) tại x=4;y=6

Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải

NV
22 tháng 3 2022

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

22 tháng 3 2022

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

24 tháng 7 2019

Bạn chú thích hơi quá lố :) 

Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16z^2\)

Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)

Học tốt !

24 tháng 7 2019

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y^2\right)\)

\(\Leftrightarrow\left(5x-3y\right)^2-16z^2-\left(3x-5y\right)^2=0\)

\(\Leftrightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)-16z^2=0\)

\(\Leftrightarrow16x^2=16y^2+16z^2\)(luôn đúng)

9 tháng 9 2021

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x-y\right)\left(x+y\right)-4x^2\\ P=\left(x-y-x-y\right)^2-4x^2\\ P=4y^2-4x^2=4\left(y-x\right)\left(x+y\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Dựa vào $a,b,c>0$ và $abc=1$ thì không tính được giá trị của biểu thức trên nhé em. Em chỉ có thể tính được giá trị nhỏ nhất của nó thôi.

17 tháng 3 2021

Thầy cho em hỏi có tính được giá trị lớn nhất không thầy, em cần giá trị lớn nhất là hạnh phúc rồi ạ.

28 tháng 8 2016

\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)

Vậy A > 0

28 tháng 8 2016

\(A=x^2+x+1\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow x^2+1+1\ge1\)

Vậy: \(A>0\)

18 tháng 4 2019

Trên đây nó ko cho đăng ảnh,mn chịu khó nhập link này vào nha:https://i.imgur.com/xQNntGH.png