K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2022

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

22 tháng 3 2022

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

28 tháng 7 2021

⇔3x2+2y2+2z2+2yz=2⇔3x2+2y2+2z2+2yz=2

⇒2≥3x2+2y2+2z2+y2+z2⇒2≥3x2+2y2+2z2+y2+z2 

⇔2≥3(x2+y2+z2)⇔2≥3(x2+y2+z2)

Có: (x+y+z)2≤3(x2+y2+z2)≤2(x+y+z)2≤3(x2+y2+z2)≤2

⇒⇒A2≤2A2≤2 ⇔A∈[−√2;√2]⇔A∈[−2;2]

minA=-1⇔⇔{x+y+z=−√2x=y=z{x+y+z=−2x=y=z  ⇒x=y=z=−√23⇒x=y=z=−23

maxA=1⇔{x+y+z=√2x=y=z⇔{x+y+z=2x=y=z ⇒x=y=z=√23

28 tháng 6 2019

Không có mô tả ảnh.

giúp mình với

28 tháng 6 2019

Với \(b=\frac{3-\sqrt{5}}{2}\)   => \(\sqrt{b}=\sqrt{\frac{6-2\sqrt{5}}{4}}=\frac{\sqrt{5}-1}{2}\)=> \(\sqrt{b}=1-b\)(*)

Áp dụng bất đẳng thức cosi ta có :

\(x^2+by^2\ge2xy\sqrt{b}\)

\(x^2+bz^2\ge2xz\sqrt{b}\)

\(\left(1-b\right)y^2+\left(1-b\right)z^2\ge2\left(1-b\right)yz\)

Cộng 3 vế của BĐT và kết hợp với (*) ta có

\(2x^2+y^2+z^2\ge2\sqrt{b}\left(xy+yz+xz\right)=2\sqrt{b}\)=> \(MinA=2\sqrt{b}\)với \(b=\frac{3-\sqrt{5}}{2}\)

Dấu bằng xảy ra khi \(y=z=\frac{x}{\sqrt{b}}\)và xy+yz+xz=1

=> \(x=\sqrt{\frac{b\sqrt{b}}{2b+\sqrt{b}}};y=z=\sqrt{\frac{\sqrt{b}}{2b+\sqrt{b}}}\)với \(b=\frac{3-\sqrt{5}}{2}\)

6 tháng 1 2019

= - 4600

hok tốt 

~ chanh ~

22 tháng 4 2022

\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1^2}{3}=\dfrac{1}{3}\)

-Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

22 tháng 4 2022

-Những bài c/m BĐT có phương hướng sử dụng các BĐT đơn giản hơn để c/m:

-Thí dụ: BĐT Caushy:

*Hai số: \(a+b\ge\sqrt{ab}\left(a,b>0\right)\)\("="\Leftrightarrow a=b\).

\(a^2+b^2\ge2ab\) . \("="\Leftrightarrow a=b\)

-Và còn nhiều BĐT khác nữa.....

4 tháng 8 2021

còn cách làm khác không ạ?