Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,=1^2-\left(x-y\right)^2=\left(1+x-y\right)\left(1-x+y\right)\)
\(c,=\left(x^2+1\right)^2-\left(2x\right)^2=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x-1\right)^2\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b\right)^2-\left(3a\right)^2\)
\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)
\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)
\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Lời giải:
Dựa vào công thức hằng đẳng thức đáng nhớ:
\(x^3+y^3=(x+y)(x^2-xy+y^2)\)
\(x^3-y^3=(x-y)(x^2+xy+y^2)\)
Ta có thể điền như sau:
\((2a+3b)(4a^2-6ab+9b^2)=8a^3+27b^3\)
\((5x-4y)(25x^2+20xy+16y^2)=(5x)^3-(4y)^3=125x^3-64y^3\)
a) (3x+y)(9x2-3xy+y2) = 27x3+y3
b)(2x-5)(4x2+10x+25) = 8x3-125
a)(3x+y)(9x2 -3xy+y2 )=27x3 +y3 |
b)(2x-5)(4x2 +10x+52 )=8x3 -125 |
nho | k |
minh | nhe |
a) HĐT: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\left(2a+3b\right)\left(4a^2-12ab+9b^2\right)=8a^3+27b^3\)
b) HĐT: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(5x-4y\right)\left(25x^2+20xy+16y^2\right)=125x^3-64y^3\)