Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\Rightarrow x=38\\\dfrac{y}{21}=2\Rightarrow y=42\end{matrix}\right.\)
Vậy ..............
Chúc bạn học tốt!
\(\dfrac{x}{19}\)=\(\dfrac{y}{21}\) và 2x - y = 34
+ Ta có : \(\dfrac{x}{19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\)\(\dfrac{2.x}{2.19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\) và 2x-y=34
+ Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\)=\(\dfrac{2.x-y}{38-21}\)=\(\dfrac{34}{17}\)=2
\(\Rightarrow\left\{{}\begin{matrix}x=2.38=76\\y=2.21=42\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy x=38 và y=42 cần tìm.
a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)
\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)
\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)
Vậy x = 51; y = 9
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)
\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)
Vậy x = 38; y = 42.
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) và \(x+y\) \(=60\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)
\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)
+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)
Vậy \(x=51\) ; \(y=9\)
Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\) và \(2x-y=34\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)
+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)
+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)
Vậy \(x=38\) ; \(x=42\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x-y}{19\cdot2-21}=\dfrac{34}{17}=2\\ \Rightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
1. \(\dfrac{x}{19}=\dfrac{y}{21};2x-y=34\)
Có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
=> \(\dfrac{2x}{38}=\dfrac{y}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=> \(\dfrac{x}{19}=2=>x=2.19=38\)
=> \(\dfrac{y}{21}=2=>y=2.21=42\)
Vậy x= 38 ; y= 42
2. \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\);\(2x+3y-z=186\)
Có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
=> \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=3=>x=3.15=45\)
=>\(\dfrac{y}{20}=3=>y=3.20=60\)
=> \(\dfrac{z}{28}=3=>z=3.28=84\)
Vậy x=45;y=60;z=84
1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x -y =34
Từ \(\dfrac{x}{19}=\dfrac{y}{21}=>\dfrac{2x}{38}=\dfrac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>\(\dfrac{2x}{38}=2=>2x=2.38=>2x=76=>x=76:2=>x=38\)
=>\(\dfrac{y}{21}=2=>y=2.21=>y=42\)
Vậy x=38; y=42
2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x+3y-z=186
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=>\(\dfrac{2x}{30}=3=>2x=3.30=>2x=90=>x=90:2=>x=45\)
=>\(\dfrac{3y}{60}=3=>3y=3.60=>3y=180=>y=180:3=>y=60\)
=>\(\dfrac{z}{28}=3=>z=3.28=>z=84\)
Vậy x=45; y=60; z=84
3)\(\dfrac{x}{3}=\dfrac{y}{4}\) và\(\dfrac{y}{5}=\dfrac{z}{7}\)và 2x+3y-z=372
Từ\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}=>\dfrac{y}{20}=\dfrac{z}{28}\)
=>\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)
=>\(\dfrac{2x}{30}=6=>2x=6.30=>2x=180=>x=180:2=>x=90\)
=>\(\dfrac{3y}{60}=6=>3y=6.60=>3y=360=>y=360:3=>y=120\)
=>\(\dfrac{z}{28}=6=>z=6.28=>z=148\)
Vậy x=90; y=120; z=148
+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\) (2)
Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)
+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)
a) Ta có: \(2x=3y\)
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)
Ta có: 5x=7z
nên \(\dfrac{x}{7}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)
mà 2x-y=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy: (x,y)=(38;42)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)
Vật \(x=14;y=26\)
b) (Chỗ này bạn viết nhầm thì phải)
Ta có:
\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
và \(x-y=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Vậy \(x=12;y=28\)
c) Ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)
và \(2x-y=34\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)
Vậy \(x=38;y=42\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)
Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v
a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)
\(\)
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
x=-3.17=-51
y=-3.3=-9
câu tiếp nha:\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
x=19.2=38
y=21.2=42
Chúc bạn học tốt
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\)và x+y=-60
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
=>x=-3.17=-51
y=-3.3=-9
b)\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)và 2x-y=34
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>x=2.19=38
y=2.21=42
1/ Ta có: -2x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=10\\\dfrac{y}{-2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.\left(-2\right)-20\end{matrix}\right.\)
Vậy x = 50; y = -20.
2/ Ta có: 3x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{3}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
Vậy x = 25; y = 15.
3/ Ta có: 4x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
Vậy x = 25; y = 20.
4/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=1\\\dfrac{y}{-5}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)
Vậy x = 2; y = -5.
5/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
Vậy x = 38; y = 42.
\(-2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+-2}=\dfrac{30}{3}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.-2=-20\end{matrix}\right.\)
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{3x}{15}=\dfrac{2y}{8}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)
\(x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.2=2\\y=1.\left(-5\right)=-5\end{matrix}\right.\)
\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x-y}{2\cdot19-21}=\dfrac{34}{17}=2\)
Do đó: x=38;y=42