Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
b: 2x=3y nên x/3=y/2
=>x/21=y/14
5x=7z nen x/7=z/5
=>x/21=z/15
=>x/21=y/14=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot15}=\dfrac{30}{40}=\dfrac{3}{4}\)
Do đó: x=63/4; y=21/2; z=45/4
\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)
\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)
⇒\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)⇒\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
⇒x=42,y=28,z=20
\(\dfrac{x}{3}=\dfrac{y}{2}\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}\)
\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)
⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)⇒\(\dfrac{x}{15}=\dfrac{2y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)
⇒x=48,y=32,z=336/5
Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)
Ta có: \(\dfrac{x}{4}=k\) \(\Rightarrow\) \(x=4k\) (1)
\(\dfrac{y}{5}=k\) \(\Rightarrow\) \(y=5k\) (2)
Mà theo đề bài ta có \(xy=80\)
Thế (1) và (2) vào: \(4k.5k=80\\\)
\(\Rightarrow20k^2=80\)
\(\Rightarrow k^2=80:20=4\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\) hoặc \(k=-2\)
Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}=2\)
\(\dfrac{x}{4}=2\Rightarrow x=2.4=8\)
\(\dfrac{y}{5}=2\Rightarrow x=2.5=10\)
Có \(\dfrac{x}{4}=\dfrac{y}{5}=-2\)
\(\dfrac{x}{4}=-2\Rightarrow x=\left(-2\right).4=-8\)
\(\dfrac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)
Vậy có 2 cặp \(\left(x,y\right)=\left(8,10\right);\left(-8,-10\right)\)
a, Ta có: \(2x=3y;7z=5y\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{z}{5}=\dfrac{y}{7}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\) và \(3x-7y+5z=30\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.21=42\\y=2.14=28\\z=2.10=20\end{matrix}\right.\)
Vậy \(x=42;y=28;z=20\)
b, Ta có: \(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow5x:y:3z=15:5:\left(-6\right)\) và \(5x-y+3z=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{-16}{4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4.3=-12\\y=-4.5=-20\\z=-4.\left(-2\right)=8\end{matrix}\right.\)
Vậy \(x=-12;y=-20;z=8\)
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
Theo đề bài ra ta có:
2x=3y => \(\dfrac{ }{ }\)x/3 = y/2
5x= 7z => x/7= z/ 5
Lại có :
X/3 = y/2 => x/ 21 = y/14 (1)
X/7 = z/5 => x/ 21 = z/15 (2)
Từ (1) và (2) => x/ 21= y/14= z/15 và 3x- 7y + 5z= 30(đề bài cho)
Áp dung t/c của dãy tỉ số bằng nhau ta có:
3x/ 63 - 7y/98 + 5z/75 = 30/40= 3/4
..........
Sau đó tự làm nha bạn
Mink làm tắt nha
\(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{x}{7}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)\(=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{25}\)\(=\dfrac{3x-5y+5z}{63-98-25}=\dfrac{-1}{2}\)
\(\Rightarrow x=\dfrac{-21}{2};y=-7;z=\dfrac{-15}{2}\)
+) 2x = 3y => \(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
5x = 7z => \(\dfrac{x}{7}=\dfrac{z}{5}\Rightarrow\dfrac{x}{21}=\dfrac{z}{15}\) (2)
Từ (1) và (2) => \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\cdot21=15,75\\y=\dfrac{3}{4}\cdot14=10,5\\z=\dfrac{3}{4}\cdot15=11,25\end{matrix}\right.\)
+) Áp dụng tính chất DTSBN : \(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot19=38\\y=2\cdot21=42\end{matrix}\right.\)
a) Ta có: \(2x=3y\)
nên \(\dfrac{x}{3}=\dfrac{y}{2}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}\)(1)
Ta có: 5x=7z
nên \(\dfrac{x}{7}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{21}=\dfrac{z}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)
hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)
mà 3x-7y+5z=30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=\dfrac{3}{4}\\\dfrac{7y}{98}=\dfrac{3}{4}\\\dfrac{5z}{75}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{169}{4}\\7y=\dfrac{147}{2}\\5z=\dfrac{225}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{169}{12}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{169}{12};\dfrac{21}{2};\dfrac{45}{4}\right)\)
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
nên \(\dfrac{2x}{38}=\dfrac{y}{21}\)
mà 2x-y=34
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy: (x,y)=(38;42)