Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(f\left(x\right)⋮4x-1\Rightarrow f\left(\dfrac{1}{4}\right)=0\)
\(f\left(x\right)⋮x+3\Rightarrow f\left(-3\right)=0\)
Ta có hpt:\(\left\{{}\begin{matrix}2\left(\dfrac{1}{4}\right)^2a+\dfrac{1}{4}b-3=0\\2.\left(-3\right)^2a-3b-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=11\end{matrix}\right.\)
bạn ơi chỗ f(1/4)=0 làm sao ra được vậy, mình không hiểu
Dễ mak , chỉ cần áp dụng định lý Bơ- du , thay x =1/4 và x = -3 vào Đa thức , nó ra 2 phương trình thì bạn giải hệ là xong
Đa thức x2 - 3x + 2 có nghiệm \(\Leftrightarrow\)x2 - 3x + 2 = 0
\(\Leftrightarrow x^2-2x-x+2=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
1 và 2 là hai nghiệm của đa thức x2 - 3x + 2
Để f(x) = x4 + ax3 + bx - 1 chia hết cho x2 - 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x4 + ax3 + bx - 1
Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1
Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)
Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)
\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)
Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
đáp án là 13
mình lấy 2 nghiệm của 4x-1 và x+3 lần lượt thay vào đa thức 2ax2+bx-3
ta được hệ phương trình giải hệ ta đươc a và b
nhớ k cho mình nha