Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề.
VD: n=2=> \(A=5^2\left(5^2+1\right)-6^2\left(3^2+2\right)=25.\left(25+1\right)-36.\left(9+2\right)=25.26-36.11=650-396254\)không chia hết cho 91
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
\(5^{n+2}+3^{n+2}-3^n-5^n=5^n\left(5^2-1\right)+3^n\left(3^2-1\right)=5^n.24+3^n.8\)
Ta có \(5^n.24⋮24\) và \(3^n.8⋮3.8=24\)
Vậy ta đc đpcm
5n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.85n+2+3n+2−3n−5n=5n(52−1)+3n(32−1)=5n.24+3n.8
Ta có 5n.24⋮245n.24⋮24 và 3n.8⋮3.8=24 vây ta CM đc cái trên
Sửa lại đầu bài là:
\(5^n.\left(5^n+1\right)-6^n.\left(3^n+2^n\right)\) chia hết cho 91
\(91=7.13\)
Đặt \(A=5^n\left(5^n+1\right)-6^n\left(3^{n+2}\right)\)
\(\Rightarrow A=\left(25^n-18^n\right)-\left(12^n-5^n\right)\)
Ta có:
\(\left\{\begin{matrix}25^n-18^n⋮25-18=7\\12^n-5^n⋮12-5=7\end{matrix}\right.\)\(\Leftrightarrow A⋮7\)
Mặt khác:
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)\)
Lại có:
\(\left\{\begin{matrix}25^n-12^n⋮25-12=13\\18^n-5^n⋮18-5=13\end{matrix}\right.\)\(\Leftrightarrow A⋮13\)
Mà: \(\left(7;13\right)=1\)
\(\Leftrightarrow A⋮91\)
Vậy \(5^n\left(5^n+1\right)-6^n\left(3^{n+2}\right)⋮91\) (Đpcm)