K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

Gọi số đo ba cạnh của tam giác vuông là x - d, x, x + d

Theo giả thiết ta có x   +   d 2   =   x   −   d 2   +   x 2  (1)

Từ (1) tìm được x = 0, x = 4d

Như vậy có thể có tam giác vuông thoả mãn đầu bài, các cạnh của nó là 3d, 4d, 5d. Đặc biệt, nếu d = 1 thì tam giác vuông có các cạnh là 3, 4, 5 (tam giác Ai Cập).

19 tháng 5 2017

Gọi số đo ba cạnh của tam giác vuông là \(x-d,x,x+d\)

Theo giả thiết ta có \(\left(x+d\right)^2=\left(x-d\right)^2+x^2\) (1)

Từ (1) tìm được \(x=0;x=4d\)

Như vậy có thể có tam giác vuông thỏa mãn đầu bài, các cạnh của nó là 3d, 4d, 5d. Đặc biệt, nếu \(d=1\) thì tam giác vuông có cách cạnh là 3, 4, 5 (tam giác Ai Cập)

3 tháng 9 2017

quá luyên thuyên Nguyen Thuy Hoa

1 tháng 11 2017

Chọn C

Ba cạnh a, b, c ( a < b < c) của một tam giác theo thứ tự đó lập thành một cấp số cộng thỏa mãn yêu cầu thì:

   a 2 + b 2 = c 2 a + b + c = 3 a + c = 2 b ⇔ a 2 + b 2 = c 2 3 b = 3 a + c = 2 b ⇔ a 2 + b 2 = c 2 b = 1 a = 2 b − c = 2 − c .

Ta có

a 2 + b 2 = c 2 → a = 2 − c b = 1 2 − c 2 + 1 = c 2  

⇔ − 4 c + 5 = 0 ⇔ c = 5 4 ⇒ a = 3 4 b = 1 c = 5 4 .

3 tháng 6 2018

Chọn C.

Gọi x, y, z theo thứ tự tăng dần của độ dài ba cạnh của tam giác.

Chu vi của tam giác: x + y + z = 3a          (1)

Tính chất của cấp số cộng có x + z = 2y               (2)

Vì tam giác vuông nên có: x2 + y2 = z2    (3)

Thay (2) vào (1) được 3y = 3a hay y = a, thay y = a vào (2) được: x + z = 2a hay x = 2a - z

Thay x và y vào (3) được: (2a – z)2 + a2 = z2 5a2 – 4az = 0 ⇔ 

Độ dài ba cạnh của tam giác thỏa yêu cầu: 

Vậy độ dài cạnh lớn nhất của tam giác là 

- Gọi độ dài các cạnh của đa giác trên là:\(a_1,a_2,...,a_n\left(cm\right)\left(a_1< a_2< ...< a_n\right)\left(n\in N\cdot,n>2\right)\)

- Vì độ dài các cạnh của đa giác trên lập thành 1 cấp số cộng nên ta có:

\(\left\{{}\begin{matrix}a_n=a_1+\left(n-1\right)d\\a_1+a_2+...+a_n=na_1+\dfrac{n\left(n-1\right)}{2}d\end{matrix}\right.\)

Mặt khác, theo đề bài ta có: \(\left\{{}\begin{matrix}a_n=15\left(cm\right)\\d=3\\a_1+a_2+...+a_n=45\left(cm\right)\end{matrix}\right.\)

Do đó: \(\left\{{}\begin{matrix}a_1+3\left(n-1\right)=15\left(1\right)\\na_1+\dfrac{3n\left(n-1\right)}{2}=45\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow na_1+3n\left(n-1\right)=15n\left(3\right)\)

Lấy \(\left(3\right)-\left(2\right)\), ta được: \(\dfrac{3n\left(n-1\right)}{2}=15n-45\)

\(\Leftrightarrow3n^2-3n+90-30n=0\)

\(\Leftrightarrow n^2-11n+30=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=6\\n=5\end{matrix}\right.\)

*Với \(n=6\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(6-1\right)=0\) (loại)

*Với \(n=5\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(5-1\right)=3\left(cm\right)\)

Vậy số cạnh của đa giác đó là 5.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Do tam giác đó là tam giác vuông nên có một góc bằng \({90^ \circ }\).

Giả sử hai góc còn lại của tam giác có số đo lần lượt là \(a,b\left( {{0^ \circ } < a,b < {{90}^ \circ }} \right)\).

Vì tổng ba góc trong tam giác bằng \({180^ \circ }\) nên ta có: \(a + b + {90^ \circ } = {180^ \circ } \Leftrightarrow a + b = {90^ \circ }\)(1).

Vì số đo ba góc trong tam giác lập thành cấp số cộng nên ta có:

\(b = \frac{{a + {{90}^ \circ }}}{2} \Leftrightarrow 2b = a + {90^ \circ } \Leftrightarrow  - a + 2b = {90^ \circ }\) (2)

Từ (1) và (2) ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}a + b = {90^ \circ }\\ - a + 2b = {90^ \circ }\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = {30^ \circ }\\b = {60^ \circ }\end{array} \right.\)

Vậy số đo ba góc của tam giác vuông đó lần lượt là: \({30^ \circ };{60^ \circ };{90^ \circ }\).

NV
21 tháng 1 2021

Gọi 3 góc lần lượt là \(a;b;90\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=90\\2b=a+90\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=30\\b=60\end{matrix}\right.\)

Vậy số đo 3 góc là \(30^0;60^0;90^0\)

23 tháng 2 2019

Chọn C

Giả sử ba cạnh của tam giác ABC là a,b,c. u 1 + u 1 q 4 = 51

không mất tính tổng quát, ta giả sử 0 < a≤a≤b≤c, nếu chúng tạo thành cấp số nhân thì theo tính chất của cấp số nhân Ta có: b2=ac.

Theo định lý hàm côsin Ta có:

Mặt khác  a 2 + c 2 ≥ 2 a c ⇒ cos B ≥ 1 − 1 2

Vậy góc B ^ ≤ 60 ° ,mà  a ≤ b ⇒ A ≤ 60 ° , cho nên tam giác ABC có hai góc không quá 60°

8 tháng 1 2018

Chọn A.

Ta có  và tam giác ABC nhọn nên A = 45º.

A + B + C = 180 º B + C = 180º - 45º = 135º

Do 3 góc tam giác lập thành cấp số cộng ; số đo góc A nhỏ nhất nên B = A + d; C = A + 2d.

Khi đó: B + C = A + d + A + 2d = 2A + 3d 3d = 135º - 2.45º = 45º

d = 15º B = A + d = 60º; C = A + 2d = 75º