K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2021

Gọi 3 góc lần lượt là \(a;b;90\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=90\\2b=a+90\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=30\\b=60\end{matrix}\right.\)

Vậy số đo 3 góc là \(30^0;60^0;90^0\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Do tam giác đó là tam giác vuông nên có một góc bằng \({90^ \circ }\).

Giả sử hai góc còn lại của tam giác có số đo lần lượt là \(a,b\left( {{0^ \circ } < a,b < {{90}^ \circ }} \right)\).

Vì tổng ba góc trong tam giác bằng \({180^ \circ }\) nên ta có: \(a + b + {90^ \circ } = {180^ \circ } \Leftrightarrow a + b = {90^ \circ }\)(1).

Vì số đo ba góc trong tam giác lập thành cấp số cộng nên ta có:

\(b = \frac{{a + {{90}^ \circ }}}{2} \Leftrightarrow 2b = a + {90^ \circ } \Leftrightarrow  - a + 2b = {90^ \circ }\) (2)

Từ (1) và (2) ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}a + b = {90^ \circ }\\ - a + 2b = {90^ \circ }\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = {30^ \circ }\\b = {60^ \circ }\end{array} \right.\)

Vậy số đo ba góc của tam giác vuông đó lần lượt là: \({30^ \circ };{60^ \circ };{90^ \circ }\).

8 tháng 1 2018

Chọn A.

Ta có  và tam giác ABC nhọn nên A = 45º.

A + B + C = 180 º B + C = 180º - 45º = 135º

Do 3 góc tam giác lập thành cấp số cộng ; số đo góc A nhỏ nhất nên B = A + d; C = A + 2d.

Khi đó: B + C = A + d + A + 2d = 2A + 3d 3d = 135º - 2.45º = 45º

d = 15º B = A + d = 60º; C = A + 2d = 75º

10 tháng 8 2019

Đáp án D

22 tháng 2 2018

Đáp án D

16 tháng 10 2018

Chọn C

Gọi số đo ba góc ba góc lập thành cấp số cộng là 25; 25+ d ; 25 +2d có công sai d.

Tổng ba góc trong một tam giác bằng 1800 nên :

   u 1 + u 2 + u 3 = 180 ⇔ 25 + 25 + d + 25 + 2 d = 180 ⇔ 3 d = 105 ⇔ d = 35 .

Vâỵ

u 2 = 25 + ​    35 = 60 ;   u 3 = 25 + ​ 2 ​​ .   35 =    95.

17 tháng 9 2023

Đặt \(u_1;u_2;u_3\) là 3 góc của tam giác lập thành cấp số nhân

Ta có :

\(u_1+u_2+u_3=180\)

\(\Leftrightarrow u_1+u_1.q+u_1.q^2=180\)

\(\Leftrightarrow u_1\left(1+q+q^2\right)=180\)

\(\Leftrightarrow u_1.13=180\)

\(\Leftrightarrow u_1=\dfrac{180}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}u_2=3.\dfrac{180}{13}=\dfrac{540}{13}\\u_3=3^2.\dfrac{180}{13}=\dfrac{1620}{13}\end{matrix}\right.\)

12 tháng 1 2017

Chọn A

Gọi d=2a là công sai. Bốn số phải tìm là:

A=(x-3a); B=(x-a); C=(x+a); D=(x+3a). Ta có hệ phương trình:

4 tháng 1 2021

gọi a,b,c là 3 cạnh của tam giác.

Ta có :\(cot\left(\dfrac{A}{2}\right)+cot\left(\dfrac{C}{2}\right)=2cot\left(\dfrac{B}{2}\right)\) <=> \(\dfrac{cot\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right)}+\dfrac{cos\left(\dfrac{C}{2}\right)}{sin\left(\dfrac{C}{2}\right)}=\dfrac{2.cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{A}{2}\right)+cos\left(\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}\right)}{sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{C}{2}\right)}\)

<=> \(\dfrac{sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\) <=> \(\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)}=2.\dfrac{cos\left(\dfrac{B}{2}\right)}{sin\left(\dfrac{B}{2}\right)}\)

<=> \(sin\left(\dfrac{B}{2}\right).cos\left(\dfrac{B}{2}\right)=2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=\left[cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)-cos\left(\dfrac{A}{2}+\dfrac{C}{2}\right)\right]cos\left(\dfrac{B}{2}\right)\)

<=>\(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right).cos\left(\dfrac{B}{2}\right)-sin\left(\dfrac{B}{2}\right)cos\left(\dfrac{B}{2}\right)\)

<=> \(\dfrac{1}{2}sinB=cos\left(\dfrac{A}{2}-\dfrac{C}{2}\right)sin\left(\dfrac{A}{2}+\dfrac{C}{2}\right)-\dfrac{1}{2}sinB\)

<=> sinB = \(\dfrac{1}{2}\left(sinA+sinC\right)\) <=> \(2sinB=sinA+sinC\)

<=> \(2.\dfrac{b}{2R}=\dfrac{a}{2R}+\dfrac{c}{2R}\)

<=> a+c =2b

=> 3 cạnh của tam giác tạo thành cấp số cộng.

4 tháng 1 2021

Em cảm ơn chị