K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)

\(=\sqrt{2.4}=\sqrt{8}< 3\)

19 tháng 6 2018

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.4}< 3\)

20 tháng 9 2017

Ta có:

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)

\(........................................\)

\(< \sqrt{2.4}=\sqrt{8}< 3\)

22 tháng 9 2017

Ta có:

√2√3√4...√2000

<√2√3√4...√2000.2002

=√2√3√4...√1999√20012−1

<√2√3√4...√1999.2001

........................................

<√2.4=√8<3

9 tháng 7 2019

#)Giải : 

\(2012\sqrt{2013}< 2013^2\Rightarrow\sqrt{2011\sqrt{2012\sqrt{2013}}}< \sqrt{2011.2013}< 2012\)

Thực hiện nhiều lần ta được vế trái \(< \sqrt{2\sqrt{3.5}}< \sqrt{8}< 3\)

\(\Rightarrow\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\left(đpcm\right)\)

8 tháng 7 2018

DONE!

8 tháng 7 2018

\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)

\(=1+\sqrt{2}\)

⇒ ĐPCM