Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)
\(=\sqrt{2.4}=\sqrt{8}< 3\)
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.4}< 3\)
Ta có:
\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)
\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)
\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)
\(........................................\)
\(< \sqrt{2.4}=\sqrt{8}< 3\)
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=1+\sqrt{2}\)
⇒ ĐPCM