K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

1) Có nhận xét sau:

\(\frac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\frac{1}{\sqrt{a^2+a}\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a^2+a}}\)

\(=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}.\)Do đó biểu thức có giá trị bằng: \(\frac{1}{1}-\frac{1}{\sqrt{2}}+..-\frac{1}{\sqrt{1999}}=1-\frac{1}{\sqrt{1999}}.\)

30 tháng 6 2021

2) Có nhận xét sau:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\sqrt{a+1}-\sqrt{a}.\) Thay vào biểu thức ta được biểu thức

có giá trị bằng: \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{1999}-\sqrt{1998}=\sqrt{1999}-1.\)

4 tháng 10 2016

Bạn áp dụng \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)với n = 1, 2 , 3 , ... , 1999

12 tháng 6 2016

Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)

\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)

Vậy bất đẳng thức được chứng minh.

Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)

\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)

12 tháng 6 2016

Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé

11 tháng 10 2015

\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

sau đó tách ra là ok

9 tháng 8 2019

D = \(\frac{1-\sqrt{2}}{1-2}\)+\(\frac{\sqrt{2}-\sqrt{3}}{2-3}\)+\(\frac{\sqrt{3}-\sqrt{4}}{3-4}\)+...+\(\frac{\sqrt{1999}-\sqrt{2000}}{1999-2000}\) (liên hợp)

= -1 +\(\sqrt{2}\) -\(\sqrt{2}\) +\(\sqrt{3}\) -\(\sqrt{3}\) +\(\sqrt{4}\) -... -\(\sqrt{1999}\) +\(\sqrt{2000}\)

= \(\sqrt{2000}\)-1

7 tháng 7 2017

câu 1 ko cần nx nha

7 tháng 7 2017

Câu 2 mk cũng ko cần làm nx