Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\)
\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\)
\(\Rightarrow\)\(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\)
\(\Rightarrow\)\(\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\right)^n\) \(\left(1\right)\)
Lại có :
\(\left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}.....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_n}{a_{n+1}}=\frac{a_1.a_2.a_3.....a_n}{a_2.a_3.a_4.....a_{n+1}}=\frac{a_1}{a_{n+1}}\) \(\left(2\right)\)
Từ (1) và (2) suy ra đpcm : \(\left(\frac{a_1+a_2+a_3+...+a_n}{a_2+a_3+a_4+...+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)
Chúc bạn học tốt ~
\(a,\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}\)
\(\text{Suy ra: }\frac{a+b}{c+a}=\frac{a}{c}\Rightarrow c.\left(a+b\right)=a.\left(c+a\right)\Rightarrow ac+bc=ac+a^2\)
=>a2=bc
b)Viết đề rõ lại giúp
Tỷ lệ thức này sai nhé!
Đúng thì phải theo kết quả của lời giải này nhé!
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)
Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)