K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

30 tháng 1 2017

Nguyễn Huy TúAkai Haruma

17 tháng 2 2017

\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)

\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)

\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)

1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3

2) với bửu thức (II) A là tổng hai số hạng

số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5

số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5

KL

Với (I) A chia hết cho 2&3

Với (II) A chia hết cho 5

(I)&(II)=> điều bạn muốn tìm

17 tháng 9 2023

câu b là n^2 + n + 6 không chia hết cho 4

17 tháng 9 2023

Chắc vậy

2:

\(B=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9+3^n-2^n\cdot4-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

18 tháng 3 2017

Ta có: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\)

\(=\frac{1.2.3.4..5.6...\left(2n-1\right).2n}{\left(2.4.6....2n\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)

\(=\frac{1.2.3.4.5.6...\left(2n-1\right)}{2^n.1.2.3....n\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)

\(=\frac{1}{2^n}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.