Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(24^{54}.54^{24}.2^{10}=3^{54}.2^{162}.2^{24}.3^{72}.2^{10}=3^{126}.2^{196}\)
ta có: \(72^{63}=9^{63}.8^{63}=\left(3^2\right)^{63}.\left(2^3\right)^{63}=3^{72}.2^{108}\)
ta có: \(\frac{3^{126}.2^{196}}{3^{72}.2^{108}}=3^{54}.2^{88}\)
suy ra \(3^{126}.2^{196}\) chia hết cho \(3^{72}.2^{108}\)
suy ra \(24^{54}.54^{24}.2^{10}\) chia hết cho \(72^{63}\)
a, Ta có:
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{25}.3.5=3^{25}.15\)
Vì 15 chia hết cho 15 nên \(3^{25}.15\) chia hết cho 15.
Vậy................(đpcm)
b,Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)
\(=2^{108}.3^{72}.2^{88}.3^{54}\)
\(72^{36}=\left(2^3.3^2\right)^{36}=2^{108}.3^{72}\)
Vì \(2^{108}.3^{72}\) chia hết cho \(2^{108}.3^{72}\) nên \(2^{108}.3^{72}.2^{88}.3^{54}\) chia hết cho \(2^{108}.3^{72}\)
Vậy............(đpcm)
Chúc bạn học tốt!!!
24^54 x 54^24 x 2^10=(2^3.3)^5 x (3^3.2)^24...
=(2^3)^54 x 3^54 x (3^3)^24 x 2^24 x 2^10
= 2^162 x 2^24 x 2^10 x 3^54 x 3^72
=2^196 x 3^126
72^63=(2^3 x 3^2)^63
=(2^3)^63 x (3^2)^63= 2^18 x 3^126
Vì 2^196 x 3^126 chia hết 2^189 x 3^126
=>24^54 x 54^24 x 2^10 chia hết 72^63
a) Xét từng vế ta có :
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^2\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.2^{24}.3^{48}.2^{10}\)
\(=2^{172}.3^{102}\)
Xét vế tiếp theo ta có :
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
\(\Rightarrow72^{63}⋮24^{54}.2^{10}.54^{24}\)
\(\RightarrowĐPCM\)
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
Mà \(2^{196}.3^{126}⋮2^{189}.3^{126}\Rightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\)