K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

BẠN LƯỢT XUỐNG SẼ CÓ NHÉ

b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)

c: 5^5-5^4+5^3

=5^3(5^2-5+1)

=5^3*21 chia hết cho 7

e:

72^63=(3^2*2^3)^63=3^126*2^189

 \(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)

\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189

=>ĐPCM

g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)

 

27 tháng 11 2015

+ 36 chia hết cho 9

=> A=3636 - 910 chia hết cho 9

+A =.....6 -  815 = ...6 - ...1 = ...5 chia hết cho 5

Vậy A chia hết cho 9 ;5  mà (9;5) =1

=> A chia hết cho 9.5 = 45

9 tháng 3 2017

Ta có:

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho \(9\).

Mặt khác:

\(36^{36}\) có số tận cùng là số \(6\).

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là \(1\)

\(\Rightarrow36^{36}-9^{10}\) có tận cùng là \(6-1=5\)

\(\Rightarrow36^{36}-9^{10}⋮5\)

\(5;9\) là hai snt cùng nhau

\(\Rightarrow36^{36}-9^{10}\) chia hết cho \(45\)

27 tháng 3 2018

Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).pan−1=(a−1).[an−1+an−2+...+1]=(a−1).p (nn là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).qan+1=(a+1).[an−1−an−2+..+1]=(a+1).q (nn là 1 số nguyên dương lẻ)

Thay vào ta được như sau:

+) 222333−1=(222−1).p=13.17.p222333−1=(222−1).p=13.17.p

+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q

=>=> 222333+333222=222333−1+333222+1=13(17p+8530q)⋮13222333+333222=222333−1+333222+1=13(17p+8530q)⋮13

Vậy: 222333+333222⋮13222333+333222⋮13 (đpcm)(đpcm) 

20 tháng 9 2016

\(\left(222^{333}+333^{222}\right)⋮13\)

Áp dụng hằng đẳng thức sau
an−1=(a−1).[an−1+an−2+...+1]=(a−1).p (n là 1 số nguyên dương)
an+1=(a+1).[an−1−an−2+..+1]=(a+1).q (n là 1 số nguyên dương lẻ)

Thay vào ta được như sau:

+) 222333−1=(222−1).p=13.17.p

+) 333222+1=(3332)111+1=110889111+1=(110889+1).q=13.8530.q

=>222

20 tháng 9 2016

bác nên nhớ là lp 6 chưa hs hđt nhé nên ko đc áp dụng -_-

22 tháng 8 2015

Vì 45=9x5

=>36^36-9^10 chia hết cho 9 (1)(vì 36^36 và 9^10 đều chia hết cho9) 

36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6) 
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1) 
=> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2) 
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^36 - 9^10 chia hết cho 45.

1 tháng 1 2020

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

36 có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

 \(36^{36}-9^{10}⋮45\)

AH
Akai Haruma
Giáo viên
29 tháng 6

Lời giải:

$A=36^{36}-9^{10}=4^{36}.9^{36}-9^{10}$

$=9^{10}(4^{36}.9^{26}-1)$

Hiển nhiên $9^{10}\vdots 9\Rightarrow A\vdots 9$

Lại có:

$4\equiv -1\pmod 5; 9\equiv -1\pmod 5$

$\Rightarrow 4^{36}.9^{26}\equiv (-1)^{36}(-1)^{26}\equiv 1\pmod 5$

$\Rightarrow 4^{36}.9^{26}-1\vdots 5$

$\Rightarrow A\vdots 5$

Vậy $A\vdots 5; A\vdots 9\Rightarrow A\vdots 36$