Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
+ Với n = 0 thì n^7 - n = 0 chia hết cho 7 (đúng)
+ Giả sử k^7 - k chia hết cho 7 với k > 1
+ Ta cm : (k + 1)^7 - (k + 1) cũng chia hết cho 7
Ta có :
(k + 1)7 - (k + 1) = k7 + 7M + 1 - (k + 1)
= k^7 - k + 7M chia hết cho 7
a.
n(n + 5) - (n - 3)(n + 2)
= n2 + 5n - n2 - 2n + 3n + 6
= (n2 - n2) + (5n - 2n + 3n) + 6
= 6n + 6
= 6(n + 1)
Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.
b.
(n - 1)(n + 1) - (n - 7)(n - 5)
= n2 + n - n - 1 - n2 + 5n + 7n - 35
= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)
= 12n - 36
= 12(n - 3)
Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.
a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6
= 6n - 6 = 6(n - 1) chia hết cho 6
b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35
= 12n - 36 = 12(n - 3) chia hết cho 12
a, n(n+5) - (n-3)(n+2)
= n2 + 5n - (n2 + 2n - 3n - 6)
= n2 + 5n - n2 - 2n + 3n + 6
= 6n + 6
= 6(n + 1) chia hết cho 6 (Đpcm)
b, (n-1)(n+1) - (n-7)(n-5)
= n2 + n - n - 1 - (n2 - 5n - 7n + 35)
= n2 - 1 - n2 + 12n - 35
= 12n - 36
= 12(n - 3) chia hết cho 12 (Đpcm)
a) n(n+5)-(n-3)(n+2)
=n^2+5n-(n^2+2n-3n+6)
=n^2+5n-n^2-2n+3n-6
=6n-6
=6(n-1) chia het cho 6 voi moi n thuoc z
b) (n-1)(n+1)-(n-7)(n-5)
=n^2+n-n-1-(n^2-5n-7n+35)
=n^2-1-n^2+12n-35
=12n-36
=12(n-3) chia het cho 12 voi moi n thuoc z
a) \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3
2 câu sau tương tự nhen