K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

a.

n(n + 5) - (n - 3)(n + 2)

= n2 + 5n - n2 - 2n + 3n + 6

= (n2 - n2) + (5n - 2n + 3n) + 6

= 6n + 6

= 6(n + 1)

Vậy n(n + 5) - (n - 3)(n + 2) chia hết cho 6.

b.

(n - 1)(n + 1) - (n - 7)(n - 5)

= n2 + n - n - 1 - n2 + 5n + 7n - 35

= (n2 - n2) + (n - n + 5n + 7n) - (1 + 35)

= 12n - 36

= 12(n - 3)

Vậy (n - 1)(n + 1) - (n - 7)(n - 5) chia hết cho 12.

15 tháng 7 2016

a) n(n+5) - (n - 3)(n + 2) = n2 + 5n - n2 + 3n - 2n - 6

                                       =  6n - 6 = 6(n - 1) chia hết cho 6

b) (n - 1)(n + 1) - (n - 7)(n - 5) = n2 - 1 - n2 + 7n + 5n - 35

    = 12n - 36 = 12(n - 3) chia hết cho 12

 

15 tháng 7 2016

a, n(n+5) - (n-3)(n+2)

= n2 + 5n - (n2 + 2n - 3n - 6)

= n2 + 5n - n2 - 2n + 3n + 6

= 6n + 6

= 6(n + 1) chia hết cho 6 (Đpcm)

b, (n-1)(n+1) - (n-7)(n-5)

= n2 + n - n - 1 - (n2 - 5n - 7n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36

= 12(n - 3) chia hết cho 12 (Đpcm)

15 tháng 7 2016

a)   n(n+5)-(n-3)(n+2)

  =n^2+5n-(n^2+2n-3n+6)

  =n^2+5n-n^2-2n+3n-6

  =6n-6

  =6(n-1) chia het cho 6 voi moi n thuoc z

b)  (n-1)(n+1)-(n-7)(n-5)

  =n^2+n-n-1-(n^2-5n-7n+35)

  =n^2-1-n^2+12n-35

  =12n-36

  =12(n-3) chia het cho 12 voi moi n thuoc z

17 tháng 11 2022

b: 9^2n có chữ số tận cùng là 1

=>9^2n+14 có chữ số tận cùng là 5

=>9^2n+14 chia hết cho 5

c: n(n^2+1)(n^2+4)

=n(n-2)(n-1)(n+1)(n+2)+10n^3

Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp

nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5

=>n(n^2+1)(n^2+4) chia hết cho 5

 

24 tháng 7 2021

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

5 tháng 11 2018

\(9^{2n}+14\)

92n = 81n có chữ số tận cùng là 1

14 có chữ số tận cùng là 4

=> \(9^{2n}+14\) có chữ số tận cùng là 5 

=> \(9^{2n}+14\) chia hết cho 5 (đpcm)

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z