Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)
\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay n = 1, 2, 3, ..., 2011 vào C ta có:
\(C=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)
Vậy \(C=1-\frac{1}{\sqrt{2012}}.\)
a) bài này xét chữ số tận cùng nhé
\(12^{2000}-2^{1000}=\left(2^2\right)^{1000}-\left(2^2\right)^{500}=4^{1000}-4^{500}=\left(...6\right)-\left(...6\right)=\left(...0\right)\) chia hết cho 10
=>122000-21000 chia hết cho 10 (đpcm)
b) chưa nghĩ ra :(
Theo bài ra , ta có :
a)
\(12^{2000}-2^{1000}\)
\(=\left(12^2\right)^{1000}-2^{1000}\)
Rút gọn cả hai vế này ta được
\(144-2=142\) chia hết cho 10
Ta có 2011.2013 = (2012 - 1).(2012+1) = 2012^2 +2012 - 2012 -1 = 2012^2 -1 < 2012^2
suy ra 2011.2013 < 2012^2 suy ra \(\sqrt{2011.2013}