Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2011.2013 = (2012 - 1).(2012+1) = 2012^2 +2012 - 2012 -1 = 2012^2 -1 < 2012^2
suy ra 2011.2013 < 2012^2 suy ra \(\sqrt{2011.2013}<\sqrt{2012^2}\)
hay \(\sqrt{2011}.\sqrt{2013}<2012\)(Đ.P.C.M)
Ta có:
\(\frac{2011}{2012}=1-\frac{1}{2012}\)
\(\frac{2012}{2013}=1-\frac{1}{2013}\)
\(\frac{2013}{2014}=1-\frac{1}{2014}\)
Do \(\frac{1}{2012}>\frac{1}{2013}>\frac{1}{2014}\)=> \(-\frac{1}{2012}< -\frac{1}{2013}< -\frac{1}{2014}\)
=> \(1-\frac{1}{2012}< 1-\frac{1}{2013}< 1-\frac{1}{2014}\)
=> \(\frac{2011}{2012}< \frac{2012}{2013}< \frac{2013}{2014}\)
Cộng vế với vế của 3 đẳng thức đã cho ta được:
\(x+y+z-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2012-2\sqrt{y+2012}+1\right)+\left(z-2013+2\sqrt{z-2013}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-1\right)^2=0\\\left(\sqrt{y+2012}-1\right)^2=0\\\left(\sqrt{z-2013}-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)
Thay vào C ta được:
C = (3 - 4)2016 + (-2011 + 2012)2017 + (2014 - 2013)2018
C = 1 + 1 + 1 = 3
THÊM