Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\sqrt{n}.\frac{1}{\sqrt{n}}+\sqrt{n}.\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Thay vào đề bài ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2012}}\)
\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(< 2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2013}}\right)\)
\(< 2.\left(1-\frac{1}{\sqrt{2013}}\right)< 2\left(đpcm\right)\)
Ta có 2011.2013 = (2012 - 1).(2012+1) = 2012^2 +2012 - 2012 -1 = 2012^2 -1 < 2012^2
suy ra 2011.2013 < 2012^2 suy ra \(\sqrt{2011.2013}
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)
\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay n = 1, 2, 3, ..., 2011 vào C ta có:
\(C=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)
Vậy \(C=1-\frac{1}{\sqrt{2012}}.\)