Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{5a}{5c}=\frac{3b}{3d}=>\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(=>\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(DPCM\right)\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3b}{3d}=\frac{5a}{5c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{3b}{3d}=\frac{5a}{5c}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (điều phải chứng minh)
Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)
<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db
<=> -15ad + 15bc = -15cb + 15da
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => đpcm
Đặt a/b=b/c=k
Suy ra a=bk , c=dk
Suy ra 5a + 3b/ 5a - 3b= 5bk + 3b / 5bk - 3b = b(5k + 3) / b(5k - 3 ) = 5k + 3 / 5k - 3 (1)
5c + 3d / 5c - 3d = 5dk + 3d / 5dk - 5d = d(5k + 3) / d(5k - 3 ) = 5k + 3 / 5k - 3 (2)
Từ (1) và (2) suy ra (đpcm)
con mẹ thằng ngu thấy bố mày chưa
Đây là bài giải của bạn Trần Như cách đây lâu rồi. Mình ghi lại vì không cop được link.
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất của tỉ lệ thức ta được:
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk
a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)
Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)
Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)
b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)
Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)
Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{5a+3b}{5a-3b}=\frac{5x+3d}{5c-3d}\)
Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)
Ta có ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3b}\)
Nên : \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-4d}\left(đpcm\right)\)
Từ \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\) => \(\frac{5a}{5c}=\frac{3b}{3d}\) (vì \(\frac{5a}{5c}=\frac{a}{c}\) ; \(\frac{3b}{3d}=\frac{b}{d}\))
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\) (1)
Từ (1) , áp dụng tính chất của tỉ lệ thức ta được :
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) => ĐPCM
Ta có
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)
\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)
\(\Rightarrow-30ad+30bc=0\)
\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)
\(\)
Ta có
5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)
⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0
⇒−30ad+30bc=0⇒−30ad+30bc=0
⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc
hay ab=cdab=cd ( ĐPCM)