K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

\(\Leftrightarrow\left(ad+bc\right)^2=4abcd\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)\(\Leftrightarrow a^2d^2-2abcd+b^2d^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(với b và d khác 0)

Ta luôn dùng dấu tương đương nên không cần chứng minh ngược lại.

 

 

26 tháng 10 2017

Bài 1:

\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Leftrightarrow ad=bc\\ \Leftrightarrow ad+bc=2bc\\ \Leftrightarrow\left(ad+bc\right)^2=4b^2c^2\\ \Leftrightarrow\left(ad+bc\right)^2=4abcd\left(đpcm\right)\)

26 tháng 10 2017

Bài 2:

\(\left(ad+bc\right)^2=4abcd\\ \Leftrightarrow a^2d^2+b^2c^2+2abcd=4abcd\\ \Leftrightarrow a^2d^2-2abcd+b^2c^2=0\\ \Leftrightarrow\left(ad-bc\right)^2=0\\ \Leftrightarrow ad-bc=0\\ \Leftrightarrow ad=bc\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(dpcm\right)\)

3 tháng 1 2018

(ad+bc)^2 = 4abcd

<=> a^2d^2+2abcd+b^2c^2 = 4abcd

<=> a^2d^2+2abcd+b^2c^2-4abcd=0

<=> a^2d^2-2abcd+b^2c^2 = 0

<=> (ad-bc)^2 = 0

<=> ad-bc = 0

<=> ad=bc

<=> a/b=c/d

=> ĐPCM

k mk nha

12 tháng 2 2016

(ad+bc)2=4abcd

<=>(ad+bc)(ad+bc)-4abcd=0

<=>ad(ad+bc)+bc(ad+bc)-4abcd=0

<=>(ad2)+abcd+abcd+(bc)2-4abcd=0

<=>(ad)2+(bc)2+2abcd-(2abcd+2abcd)=0

<=>(ad)2+(bc)2+2abcd-2abcd-2abcd=0

<=>(ad)2+(bc)2-2abcd=0

<=>(ad-bc)2=0

<=>ad=bc

<=>a/b=c/d

vậy từ đẳng thức trên ta có a,b,c,d lập thành 1 TLT(đpcm)

12 tháng 2 2016

sorry em mới học lớp 5

21 tháng 10 2016

Ta có:

\(\left[ab\left(ab-2cd\right)+c^2d^2\right].\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]=0\)

\(\Leftrightarrow\left(a^2b^2-2acbd+c^2d^2\right).\left(a^2b^2-2ab+2ab+2\right)=0\)

\(\Leftrightarrow\left(ab-cd\right)^2.\left(a^2b^2+2\right)=0\)

\(a^2b^2+2>0\forall a;b\)

\(\Leftrightarrow\left(ab-cd\right)^2=0\)

\(\Leftrightarrow ab-cd=0\)

\(\Leftrightarrow ab=cd\left(đpcm\right)\)

21 tháng 10 2016

ầy sai đề nha

20 tháng 10 2015

http://olm.vn/hoi-dap/question/228341.html    ở đây nè

Ta có: \(\left(ad+bc\right)^2=4abcd\)

\(\Leftrightarrow a^2d^2+2abcd+b^2c^2-4abcd=0\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2=0\)

\(\Leftrightarrow\left(ad-bc\right)^2=0\)

\(\Leftrightarrow ad-bc=0\)

\(\Leftrightarrow ad=bc\)

hay \(\frac{a}{b}=\frac{c}{d}\)(đpcm)

26 tháng 3 2020

giúp vsyeu