K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

Câu hỏi của Nguyễn Hiền Thục - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo.

AH
Akai Haruma
Giáo viên
29 tháng 12 2018

Lời giải:

Ta có bổ đề sau: Số lập phương $a^3$ khi chia $7$ thì có dư là $0,1,6$

Chứng minh:

Nếu \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)

Nếu \(a\equiv 1\pmod 7\Rightarrow a^3\equiv 1^3\equiv 1\pmod 7\)

Nếu \(a\equiv 2\pmod 7\Rightarrow a^3\equiv 2^3\equiv 1\pmod 7\)

Nếu \(a\equiv 3\pmod 7\Rightarrow a^3\equiv 3^3\equiv 6\pmod 7\)

Nếu \(a\equiv 4\pmod 7\Rightarrow a^3\equiv 4^3\equiv \pmod 7\)

Nếu \(a\equiv 5\equiv -2\pmod 7\Rightarrow a^3\equiv (-2)^3\equiv 6\pmod 7\)

Nếu \(a\equiv 6\equiv -1\pmod 7\Rightarrow a^3\equiv (-1)^3\equiv 6\pmod 7\)

Bổ đề đc cm.

Áp dụng vào bài toán:

\(a^7-a=a(a^6-1)=a(a^3-1)(a^3+1)\)

Nếu $a^3$ chia hết cho $7$ thì $a$ chia hết cho $7$

\(\Rightarrow A=a(a^3-1)(a^3+1)\vdots 7\)

Nếu $a^3$ chia $7$ dư $1$ \(\Rightarrow a^3-1\vdots 7\Rightarrow A\vdots 7\)

Nếu $a^3$ chia $7$ dư $6$ \(\Rightarrow a^3+1\vdots 7\Rightarrow A\vdots 7\)

Vậy $A\vdots 7$ với mọi số tự nhiên $a$

NV
21 tháng 3 2023

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)

\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

Không mất tính tổng quát giả sử \(a\ge b\)

BĐT\(\Leftrightarrow a^7\left(a-1\right)+b^7\left(b-1\right)\ge0\)

\(\Leftrightarrow a^7\left(a-\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(b-\dfrac{1}{2}a-\dfrac{1}{2}b\right)\ge0\)

\(\Leftrightarrow a^7\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)+b^7\left(\dfrac{1}{2}b-\dfrac{1}{2}a\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{1}{2}a-\dfrac{1}{2}b\right)\left(a^7-b^7\right)\ge0\)(luôn đúng vì \(a\ge b\))

\(\Rightarrowđpcm\)

Cái đề này sao sao ý :

\(a^8\ge a^7vs\forall a\)

\(b^8\ge b^7vs\forall b\)

\(\Rightarrow a^8+b^8\ge a^7+b^7vs\forall ab\)

Đâu cần a + b =2 âu

7 tháng 2 2017

Bn làm sai rùi